Home
Class 12
MATHS
Evaluate the following cos [ cos^(-1) ...

Evaluate the following
`cos [ cos^(-1) ( (-1)/3) - sin^(-1) ( 1/3)]`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \cos \left[ \cos^{-1} \left( -\frac{1}{3} \right) - \sin^{-1} \left( \frac{1}{3} \right) \right] \), we can follow these steps: ### Step 1: Rewrite the expression using properties of inverse functions We know that: \[ \cos^{-1}(-\theta) = \pi - \cos^{-1}(\theta) \] Thus, we can write: \[ \cos^{-1} \left( -\frac{1}{3} \right) = \pi - \cos^{-1} \left( \frac{1}{3} \right) \] ### Step 2: Substitute this into the original expression Now substituting this into our expression, we have: \[ \cos \left[ \pi - \cos^{-1} \left( \frac{1}{3} \right) - \sin^{-1} \left( \frac{1}{3} \right) \right] \] ### Step 3: Use the identity for cosine of a difference Using the cosine of a difference identity: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] Let \( A = \pi \) and \( B = \cos^{-1} \left( \frac{1}{3} \right) + \sin^{-1} \left( \frac{1}{3} \right) \). Thus, we have: \[ \cos \left[ \pi - (\cos^{-1} \left( \frac{1}{3} \right) + \sin^{-1} \left( \frac{1}{3} \right)) \right] = -\cos \left( \cos^{-1} \left( \frac{1}{3} \right) + \sin^{-1} \left( \frac{1}{3} \right) \right) \] ### Step 4: Simplify using the identity for inverse functions We know that: \[ \cos^{-1} \theta + \sin^{-1} \theta = \frac{\pi}{2} \] Thus: \[ \cos^{-1} \left( \frac{1}{3} \right) + \sin^{-1} \left( \frac{1}{3} \right) = \frac{\pi}{2} \] ### Step 5: Substitute back into the expression Now we can substitute this back: \[ -\cos \left( \frac{\pi}{2} \right) \] ### Step 6: Evaluate the cosine We know that: \[ \cos \left( \frac{\pi}{2} \right) = 0 \] Thus: \[ -\cos \left( \frac{\pi}{2} \right) = -0 = 0 \] ### Final Answer Therefore, the value of \( \cos \left[ \cos^{-1} \left( -\frac{1}{3} \right) - \sin^{-1} \left( \frac{1}{3} \right) \right] \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : sin ^(2) ( cos ^(-1) . 1/2) + cos^(2) ( sin^(-1) . 1/3) .

Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]

Evaluate the following expression: sin("cos"^(-1)3/5)

Find the principal value of the following (i) cos^(-1) (cos 3) (ii) cos^(-1) (cos 4) (iii) cos^(-1) (cos 15) (iv) cos^(-1) (cos 30) (v) cos^(-1) (cos 50) (vi) cos^(-1) (cos.(48pi)/(7))

Evaluate the following:(i) sin(1/2\ cos^(-1)(4/5)) (ii) sin(2\ tan^(-1)(2/3))+cos(tan^(-1)sqrt(3))

Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

Evaluate the following: sin^(-1)(sinpi/4) (ii) cos^(-1)(cos2pi/3) tan^(-1)(tanpi/3)

For the principal values, evaluate each of the following : (i) sin^(-1)(-1/2)+2cos^(-1)(-(sqrt(3))/2) (ii) sin^(-1)(-(sqrt(3))/2)+cos^(-1)((sqrt(3))/2)

For the principal values, evaluate the following: sin^(-1)(-(sqrt(3))/2)+cos e c^(-1)(-2/(sqrt(3)))

Evaluate each of the following: (i) cos^(-1)(cos((13pi)/6)) (ii) cos^(-1)(cos3) (iii) cos^(-1)(cos4)