Home
Class 12
MATHS
Solve the following 5 tan^(-1) x + 3...

Solve the following
` 5 tan^(-1) x + 3 cot^(-1) x = 2 pi `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5 \tan^{-1} x + 3 \cot^{-1} x = 2\pi \), we can follow these steps: ### Step 1: Use the identity for cotangent We know that: \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \] Substituting this into the equation gives: \[ 5 \tan^{-1} x + 3 \left(\frac{\pi}{2} - \tan^{-1} x\right) = 2\pi \] ### Step 2: Simplify the equation Distributing the \(3\) in the equation: \[ 5 \tan^{-1} x + \frac{3\pi}{2} - 3 \tan^{-1} x = 2\pi \] Combine like terms: \[ (5 - 3) \tan^{-1} x + \frac{3\pi}{2} = 2\pi \] This simplifies to: \[ 2 \tan^{-1} x + \frac{3\pi}{2} = 2\pi \] ### Step 3: Isolate \( \tan^{-1} x \) Subtract \( \frac{3\pi}{2} \) from both sides: \[ 2 \tan^{-1} x = 2\pi - \frac{3\pi}{2} \] This simplifies to: \[ 2 \tan^{-1} x = \frac{4\pi}{2} - \frac{3\pi}{2} = \frac{\pi}{2} \] ### Step 4: Solve for \( \tan^{-1} x \) Divide both sides by \(2\): \[ \tan^{-1} x = \frac{\pi}{4} \] ### Step 5: Find \( x \) Taking the tangent of both sides gives: \[ x = \tan\left(\frac{\pi}{4}\right) = 1 \] ### Final Solution Thus, the solution to the equation \( 5 \tan^{-1} x + 3 \cot^{-1} x = 2\pi \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1) x gt cot^(-1) x

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

Solve the following equations (i) tan^(-1). ( x-1)/(x - 2) = tan ^(-1). ( x+1)/(x + 2) = pi/4 (ii) tan^(-1) 2 xx tan^(-1) 3x = pi/4

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

Solve for x : tan^(-1)x+2cot^(-1)x=(2pi)/3

How many solutions does the equation 5 tan^-1 x+3 cot^-1 x=2pi have ?

Solve the following equation for x : cos(tan^-1 x) = sin(cot^-1(3/4))