Home
Class 12
MATHS
If 4\ sin^(-1)x+cos^(-1)x=pi , then what...

If `4\ sin^(-1)x+cos^(-1)x=pi` , then what is the value of `x` ?

Text Solution

Verified by Experts

The correct Answer is:
` x = 1/2`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

If (sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^2)/8 then one of the values of x is

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

Solve: sin^(-1)x=pi/6+cos^(-1)x

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :