Home
Class 12
MATHS
If tan^(-1) 4 + tan ^(-1) 5 = cot^(-1...

If ` tan^(-1) 4 + tan ^(-1) 5 = cot^(-1) lambda " , then find " 'lambda'`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(4) + \tan^{-1}(5) = \cot^{-1}(\lambda) \), we will use some trigonometric identities. ### Step 1: Use the identity for the sum of inverse tangents We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] for \( ab < 1 \) or we can adjust it for \( ab > 1 \) by adding \( \pi \) if necessary. In our case, \( a = 4 \) and \( b = 5 \). ### Step 2: Calculate \( a + b \) and \( ab \) Calculate: \[ a + b = 4 + 5 = 9 \] \[ ab = 4 \cdot 5 = 20 \] ### Step 3: Apply the identity Since \( ab = 20 > 1 \), we need to use the identity: \[ \tan^{-1}(4) + \tan^{-1}(5) = \tan^{-1}\left(\frac{9}{1 - 20}\right) + \pi \] Thus, \[ \tan^{-1}(4) + \tan^{-1}(5) = \tan^{-1}\left(\frac{9}{-19}\right) + \pi \] ### Step 4: Relate to cotangent Since \( \cot^{-1}(\lambda) = \frac{\pi}{2} - \tan^{-1}(\lambda) \), we can express: \[ \cot^{-1}(\lambda) = \frac{\pi}{2} - \tan^{-1}\left(\frac{9}{-19}\right) \] This implies: \[ \lambda = -\frac{19}{9} \] ### Final Answer Thus, the value of \( \lambda \) is: \[ \lambda = -\frac{19}{9} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If 2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)= -"cos"^(-1)(63)/(lambda , then lambda=

If 2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)= -"cos"^(-1)(9lambda)/(65) , then lambda=

Sometimes we are just concerned with finding integral solutions to equations. Consider the equation tan^(-1).(1)/m+tan^(-1).(1)/n=tan^(-1).(1)/lambda , where m,n, lambda in N If lambda is such that lambda^2=1 is a prime, then how many solutions (m,n) are there for the equation?

Sometimes we are just concerned with finding integral solutions to equations. Consider the equation tan^(-1)(1/m)+tan^(-1)(1/n)=tan^(-1)(1/lambda) , where m, n, lambda in N For lambda=11 , an integral pair (m, n) satisfying the equation is:

Sometimes we are just concerned with finding integral solutions to equations. Consider the equation tan^(-1).(1)/m+tan^(-1).(1)/n=tan^(-1).(1)/lambda , where m,n, lambda in N How many positive integral solutions (m,n) exist for the equation if lambda=3 ?

If sin^2thetacos^2theta(1+tan^2theta)(1+cot^2theta)=lambda , then find the value of lambda .

Let J=int_(0)^(1)cot^(-1)(1-x+x^(2))dx and K= int_(0)^(1)tan^(-1)xdx .If J=lambda K (lambda in N) , then lambda equals

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot