Home
Class 12
MATHS
If x in (0,pi/2), then show that cos^(-1...

If `x in (0,pi/2),` then show that `cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If x in (0,pi/2),t h e ns howt h a t d/(dx)cos^(-1){7/2(1+cos2x)+(sqrt(sin^2x-48cos^2x))sinx} =1+(7sinx)/sqrt(sin^2-48cos^2x)

If x in (0, (pi)/(2)) , then show that cos^(-1) ((7)/(2) (1 + cos 2 x) + sqrt((sin^(2) x - 48 cos^(2) x)) sin x) = x - cos^(-1) (7 cos x)

Solve (1+sin^2x-cos^2x)/(1+sin^2x+cos^2x)

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

Prove that: (cos7x-cos8x)/(1+2cos5x)=cos2x-cos3x

Show that '(1-cos 2x + sin x)/(sin 2x + cos x) = tan x'

Solve cos^(-1)(cosx)>sin^(-1)(sinx),x in [0,2pi]