Home
Class 12
MATHS
Solve the following sin^(-1) . 1/5 +...

Solve the following
` sin^(-1) . 1/5 + sin^(-1) . 2/3 = sin^(-1) x `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} \left( \frac{1}{5} \right) + \sin^{-1} \left( \frac{2}{3} \right) = \sin^{-1} x \), we will use the property of inverse trigonometric functions. The property states that: \[ \sin^{-1} a + \sin^{-1} b = \sin^{-1} \left( a \sqrt{1 - b^2} + b \sqrt{1 - a^2} \right) \] ### Step 1: Identify \( a \) and \( b \) Let \( a = \frac{1}{5} \) and \( b = \frac{2}{3} \). ### Step 2: Calculate \( \sqrt{1 - b^2} \) First, we need to calculate \( \sqrt{1 - b^2} \): \[ b^2 = \left( \frac{2}{3} \right)^2 = \frac{4}{9} \] \[ 1 - b^2 = 1 - \frac{4}{9} = \frac{5}{9} \] \[ \sqrt{1 - b^2} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] ### Step 3: Calculate \( \sqrt{1 - a^2} \) Next, we calculate \( \sqrt{1 - a^2} \): \[ a^2 = \left( \frac{1}{5} \right)^2 = \frac{1}{25} \] \[ 1 - a^2 = 1 - \frac{1}{25} = \frac{24}{25} \] \[ \sqrt{1 - a^2} = \sqrt{\frac{24}{25}} = \frac{\sqrt{24}}{5} \] ### Step 4: Substitute into the property Now we substitute \( a \), \( b \), \( \sqrt{1 - b^2} \), and \( \sqrt{1 - a^2} \) into the property: \[ \sin^{-1} \left( \frac{1}{5} \right) + \sin^{-1} \left( \frac{2}{3} \right) = \sin^{-1} \left( \frac{1}{5} \cdot \frac{\sqrt{5}}{3} + \frac{2}{3} \cdot \frac{\sqrt{24}}{5} \right) \] ### Step 5: Simplify the expression Now we simplify the right-hand side: \[ = \sin^{-1} \left( \frac{\sqrt{5}}{15} + \frac{2\sqrt{24}}{15} \right) \] Combine the terms: \[ = \sin^{-1} \left( \frac{\sqrt{5} + 2\sqrt{24}}{15} \right) \] ### Step 6: Final expression for \( x \) Thus, we have: \[ x = \frac{\sqrt{5} + 2\sqrt{24}}{15} \] ### Final Answer The solution to the equation is: \[ x = \frac{\sqrt{5} + 4\sqrt{6}}{15} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve the following inequality: sin^(-1) x > cos^(-1) x

Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

Find the principal values of the following (i) sin^(-1) (sin 1) (ii) sin^(-1) (sin 2) (iii) sin^(-1) (sin 10)

Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

Solve the following inequality: sin^(-1)xgt-1

Solve the following equations: sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x sin^(-1)6x+sin^(-1)6sqrt(3)x=pi/2

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Prove each of the following sin^(- 1)(3/5)+sin^(- 1)(8/17)=sin^(- 1)(77/85)

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)