Home
Class 12
MATHS
The value of sin^(-1) {( sin. pi/3) x/sq...

The value of `sin^(-1) {( sin. pi/3) x/sqrt((x^(2) + k^(2) - kx))} - cos^(_1) {( cos. pi/6) x/sqrt((x^(2) + k^(2) - kx))}" , where" (k/2 lt x lt 2k, k gt 0)` is

A

`tan^(-1) ((2x^(2) + sk - k^(2))/(x^(2) - 2xk + k^(2)))`

B

`tan^(-1) ((x^(2) + 2xk - 2k^(2))/(x^(2) -2xk - k^(2)))`

C

` tan^(-1) ((x^(2)+2xk - 2k^(2))/( 2x^(2) - 2xk+ 2k^(2)))`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to simplify the expression step by step. ### Step 1: Write down the expression We start with the expression: \[ \sin^{-1} \left( \frac{\sin \frac{\pi}{3} \cdot x}{\sqrt{x^2 + k^2 - kx}} \right) - \cos^{-1} \left( \frac{\cos \frac{\pi}{6} \cdot x}{\sqrt{x^2 + k^2 - kx}} \right) \] ### Step 2: Substitute the values of sine and cosine We know: \[ \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \quad \text{and} \quad \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \] Thus, we can rewrite the expression as: \[ \sin^{-1} \left( \frac{\frac{\sqrt{3}}{2} x}{\sqrt{x^2 + k^2 - kx}} \right) - \cos^{-1} \left( \frac{\frac{\sqrt{3}}{2} x}{\sqrt{x^2 + k^2 - kx}} \right) \] ### Step 3: Use the identity for sine and cosine inverse We can use the identity: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] This means: \[ \sin^{-1}(a) - \cos^{-1}(a) = \sin^{-1}(a) - \left(\frac{\pi}{2} - \sin^{-1}(a)\right) = 2\sin^{-1}(a) - \frac{\pi}{2} \] Let \( a = \frac{\sqrt{3}}{2} \cdot \frac{x}{\sqrt{x^2 + k^2 - kx}} \). ### Step 4: Substitute back into the expression Thus, we can rewrite our expression as: \[ 2 \sin^{-1} \left( \frac{\sqrt{3}}{2} \cdot \frac{x}{\sqrt{x^2 + k^2 - kx}} \right) - \frac{\pi}{2} \] ### Step 5: Further simplify using double angle identity Using the identity: \[ 2 \sin^{-1}(x) = \cos^{-1}(2x^2 - 1) \] we can express: \[ 2 \sin^{-1} \left( \frac{\sqrt{3}}{2} \cdot \frac{x}{\sqrt{x^2 + k^2 - kx}} \right) = \cos^{-1} \left( 2 \left( \frac{\sqrt{3}}{2} \cdot \frac{x}{\sqrt{x^2 + k^2 - kx}} \right)^2 - 1 \right) \] ### Step 6: Calculate the argument of cosine Calculating the argument: \[ = \cos^{-1} \left( \frac{3x^2}{x^2 + k^2 - kx} - 1 \right) = \cos^{-1} \left( \frac{3x^2 - (x^2 + k^2 - kx)}{x^2 + k^2 - kx} \right) = \cos^{-1} \left( \frac{2x^2 + kx - k^2}{x^2 + k^2 - kx} \right) \] ### Step 7: Final expression Thus, the expression simplifies to: \[ \frac{\pi}{2} - \cos^{-1} \left( \frac{2x^2 + kx - k^2}{x^2 + k^2 - kx} \right) \] This means the original expression evaluates to: \[ \sin^{-1} \left( \frac{2x^2 + kx - k^2}{x^2 + k^2 - kx} \right) \] ### Conclusion The final value of the expression is: \[ \sin^{-1} \left( \frac{2x^2 + kx - k^2}{x^2 + k^2 - kx} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(-1) {(sqrt(1 + x) + sqrt(1 - x))/(2)} = (pi)/(4) + (cos^(-1) x)/(2), 0 lt x lt 1

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

" if " int (sin 2x- cos 2x) dx=(1)/(sqrt(2)) sin (2x-k)+c " then " k=?

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

If sin^(-1) (x^(2) + 2x + 2) + tan^(-1) (x^(2) - 3x - k^(2)) gt (pi)/(2) , then find the value of k

if cos x= (-sqrt(15))/(4) " and " (pi)/(2) lt x lt pi find the value of sin x .

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The value of cos (1/2 cos^(-1) . 1/8) is equal to

    Text Solution

    |

  2. solve sin^(-1) (sin 5) gt x^(2) - 4x

    Text Solution

    |

  3. The value of sin^(-1) {( sin. pi/3) x/sqrt((x^(2) + k^(2) - kx))} - co...

    Text Solution

    |

  4. Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x))...

    Text Solution

    |

  5. Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1...

    Text Solution

    |

  6. Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

    Text Solution

    |

  7. Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) +...

    Text Solution

    |

  8. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  9. If x + 1/x = 2, the principal value of sin^(-1) x is

    Text Solution

    |

  10. If x in ( - pi/2, pi/2), then the value of tan^(-1) ((tan x)/4) + ta...

    Text Solution

    |

  11. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  12. sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] i...

    Text Solution

    |

  13. If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 ...

    Text Solution

    |

  14. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  15. The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec...

    Text Solution

    |

  16. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  17. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  18. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  19. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  20. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |