Home
Class 12
MATHS
Sum of infinite terms of the series cot...

Sum of infinite terms of the series `cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + `... is

A

` pi//4`

B

`tan^(-1)2`

C

`tan^(-1) 3`

D

`tan^(-1) 4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the infinite series given by \[ S = \cot^{-1} \left(1^2 + \frac{3}{4}\right) + \cot^{-1} \left(2^2 + \frac{3}{4}\right) + \cot^{-1} \left(3^2 + \frac{3}{4}\right) + \ldots \] we can express the \(n\)-th term of the series as: \[ T_n = \cot^{-1} \left(n^2 + \frac{3}{4}\right) \] ### Step 1: Rewrite the cotangent inverse Using the property of inverse trigonometric functions, we can rewrite \(T_n\): \[ T_n = \tan^{-1} \left(\frac{1}{n^2 + \frac{3}{4}}\right) \] ### Step 2: Simplify the expression We can further simplify the term: \[ T_n = \tan^{-1} \left(\frac{1}{1 + n^2 - \frac{1}{4}}\right) = \tan^{-1} \left(\frac{1}{1 + n^2 - \left(\frac{1}{2}\right)^2}\right) \] ### Step 3: Apply the difference of squares Using the identity \(a^2 - b^2 = (a-b)(a+b)\), we can express this as: \[ T_n = \tan^{-1} \left(\frac{1}{\left(n - \frac{1}{2}\right)\left(n + \frac{1}{2}\right)}\right) \] ### Step 4: Use the tangent difference identity We can express \(T_n\) in terms of the difference of two inverse tangents: \[ T_n = \tan^{-1} \left(n + \frac{1}{2}\right) - \tan^{-1} \left(n - \frac{1}{2}\right) \] ### Step 5: Write the series as a telescoping series The sum \(S\) can be expressed as: \[ S = \sum_{n=1}^{\infty} \left( \tan^{-1} \left(n + \frac{1}{2}\right) - \tan^{-1} \left(n - \frac{1}{2}\right) \right) \] This is a telescoping series where most terms will cancel out. ### Step 6: Evaluate the limit As \(n\) approaches infinity, the series simplifies to: \[ S = \lim_{n \to \infty} \left( \tan^{-1} \left(n + \frac{1}{2}\right) - \tan^{-1} \left(\frac{1}{2}\right) \right) \] Since \(\tan^{-1}(n + \frac{1}{2})\) approaches \(\frac{\pi}{2}\) as \(n\) approaches infinity, we have: \[ S = \frac{\pi}{2} - \tan^{-1} \left(\frac{1}{2}\right) \] ### Step 7: Use the cotangent identity Using the identity \(\frac{\pi}{2} - \tan^{-1}(x) = \cot^{-1}(x)\), we can express the result as: \[ S = \cot^{-1} \left(\frac{1}{2}\right) \] ### Step 8: Final result Finally, we can express \(\cot^{-1} \left(\frac{1}{2}\right)\) as: \[ S = \tan^{-1}(2) \] Thus, the sum of the infinite series is: \[ \boxed{\tan^{-1}(2)} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2^3+1/(2^2))+cot^(- 1)(2^4+1/(2^3))+... is

Sum of infinite terms of series 3 + 5. 1/4 + 7. 1/4^2 + .... is

If the sum of first 16 terms of the series s=cot^(-1)(2^2+1/2)+cot^(-1)(2^3+1/(2^2))+cot^(-1)(2^4+1/(2^3))+ up to terms is cot^(-1)((1+2^n)/(2(2^(16)-1))) , then find the value of ndot

The sum of the infinite series cot^(-1)(7/4)+cot^(-1)((19)/4) +cot^(-1)((39)/4)....oo

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

Find sum to infinite terms of the series 1 + 2 ((11)/(10)) + 3 ((11)/(10)) ^(2) + 4 ((11)/(10)) ^(3) +………

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

Sum up to n terms the series 1.2^(2)+2.3^(2)+ 3.4^(2)+...

FInd the sum of infinite terms of the series 1/(1.2.3)+1/(2.3.4)+1/(3.4.5).....

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The value of sin^(-1) {( sin. pi/3) x/sqrt((x^(2) + k^(2) - kx))} - co...

    Text Solution

    |

  2. Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x))...

    Text Solution

    |

  3. Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1...

    Text Solution

    |

  4. Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

    Text Solution

    |

  5. Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) +...

    Text Solution

    |

  6. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  7. If x + 1/x = 2, the principal value of sin^(-1) x is

    Text Solution

    |

  8. If x in ( - pi/2, pi/2), then the value of tan^(-1) ((tan x)/4) + ta...

    Text Solution

    |

  9. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  10. sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] i...

    Text Solution

    |

  11. If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 ...

    Text Solution

    |

  12. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  13. The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec...

    Text Solution

    |

  14. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  15. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  16. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  17. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  18. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  19. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  20. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |