Home
Class 12
MATHS
Solution of equation cot^(-1) x + sin^(-...

Solution of equation `cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 ` is

A

` x = 3`

B

` x = 1//sqrt5`

C

` x = 0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1} x + \sin^{-1} \frac{1}{\sqrt{5}} = \frac{\pi}{4} \), we can follow these steps: ### Step 1: Rewrite \( \cot^{-1} x \) Let \( y = \cot^{-1} x \). Then, we can express \( x \) in terms of \( y \): \[ \cot y = x \implies \tan y = \frac{1}{x} \] Thus, we can rewrite the equation as: \[ y + \sin^{-1} \frac{1}{\sqrt{5}} = \frac{\pi}{4} \] ### Step 2: Isolate \( y \) Rearranging the equation gives: \[ y = \frac{\pi}{4} - \sin^{-1} \frac{1}{\sqrt{5}} \] ### Step 3: Rewrite \( \sin^{-1} \frac{1}{\sqrt{5}} \) Let \( z = \sin^{-1} \frac{1}{\sqrt{5}} \). Then: \[ \sin z = \frac{1}{\sqrt{5}} \] Using the Pythagorean identity, we can find \( \cos z \): \[ \cos z = \sqrt{1 - \sin^2 z} = \sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2} = \sqrt{1 - \frac{1}{5}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] ### Step 4: Find \( \tan z \) Now, we can find \( \tan z \): \[ \tan z = \frac{\sin z}{\cos z} = \frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}} = \frac{1}{2} \] Thus, we have: \[ z = \tan^{-1} \frac{1}{2} \] ### Step 5: Substitute back into the equation Now substituting back, we have: \[ y = \frac{\pi}{4} - \tan^{-1} \frac{1}{2} \] ### Step 6: Use the tangent addition formula Using the tangent addition formula: \[ \tan\left(\frac{\pi}{4} - \tan^{-1} \frac{1}{2}\right) = \frac{1 - \tan(\tan^{-1} \frac{1}{2})}{1 + \tan(\tan^{-1} \frac{1}{2})} = \frac{1 - \frac{1}{2}}{1 + \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3} \] Thus, we have: \[ \tan y = \frac{1}{3} \] ### Step 7: Relate back to \( x \) Since \( y = \cot^{-1} x \), we have: \[ \tan y = \frac{1}{x} \implies \frac{1}{3} = \frac{1}{x} \implies x = 3 \] ### Conclusion The solution to the equation \( \cot^{-1} x + \sin^{-1} \frac{1}{\sqrt{5}} = \frac{\pi}{4} \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

The number of solution (s) of the equation sin^(- 1)(1-x)-2sin^(- 1)x=pi/2 is/are

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

Find the number of solution of the equation cot^(2) (sin x+3)=1 in [0, 3pi] .

Solve the equation sin^(-1)x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2 is:

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x))...

    Text Solution

    |

  2. Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1...

    Text Solution

    |

  3. Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

    Text Solution

    |

  4. Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) +...

    Text Solution

    |

  5. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  6. If x + 1/x = 2, the principal value of sin^(-1) x is

    Text Solution

    |

  7. If x in ( - pi/2, pi/2), then the value of tan^(-1) ((tan x)/4) + ta...

    Text Solution

    |

  8. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  9. sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] i...

    Text Solution

    |

  10. If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 ...

    Text Solution

    |

  11. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  12. The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec...

    Text Solution

    |

  13. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  14. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  15. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  16. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  17. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  18. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  19. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  20. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |