Home
Class 12
MATHS
Solution set of the inequality ( cot^(...

Solution set of the inequality
`( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0` is

A

`(cot 3, cot 2)`

B

`( - infty, cot 2) cup ( cot 2, infty)`

C

`( cot 2, infty)`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( (\cot^{-1} x)^2 - 5 \cot^{-1} x + 6 > 0 \), we can follow these steps: ### Step 1: Substitute \( \cot^{-1} x \) with \( t \) Let \( t = \cot^{-1} x \). The inequality then becomes: \[ t^2 - 5t + 6 > 0 \] ### Step 2: Factor the quadratic expression Next, we can factor the quadratic expression: \[ t^2 - 5t + 6 = (t - 2)(t - 3) \] Thus, the inequality can be rewritten as: \[ (t - 2)(t - 3) > 0 \] ### Step 3: Determine the critical points The critical points from the factors are \( t = 2 \) and \( t = 3 \). These points divide the number line into intervals. We will test the sign of the product \( (t - 2)(t - 3) \) in each interval: - Interval 1: \( (-\infty, 2) \) - Interval 2: \( (2, 3) \) - Interval 3: \( (3, \infty) \) ### Step 4: Test the intervals 1. **For \( t < 2 \)** (e.g., \( t = 0 \)): \[ (0 - 2)(0 - 3) = ( -2)( -3) = 6 > 0 \quad \text{(True)} \] 2. **For \( 2 < t < 3 \)** (e.g., \( t = 2.5 \)): \[ (2.5 - 2)(2.5 - 3) = (0.5)( -0.5) = -0.25 < 0 \quad \text{(False)} \] 3. **For \( t > 3 \)** (e.g., \( t = 4 \)): \[ (4 - 2)(4 - 3) = (2)(1) = 2 > 0 \quad \text{(True)} \] ### Step 5: Combine the results The inequality \( (t - 2)(t - 3) > 0 \) holds true in the intervals: \[ (-\infty, 2) \cup (3, \infty) \] ### Step 6: Convert back to \( x \) Since \( t = \cot^{-1} x \), we need to find the corresponding values of \( x \): - For \( t < 2 \): \[ \cot^{-1} x < 2 \implies x > \cot(2) \] - For \( t > 3 \): \[ \cot^{-1} x > 3 \implies x < \cot(3) \] ### Final Solution Set Thus, the solution set for the inequality is: \[ (-\infty, \cot(3)) \cup (\cot(2), \infty) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The solution set of the inequality (tan^(-1)x)^(2) le (tan^(-1)x) +6 is

All x satisfying the inequality (cot^(-1) x)^(2) - 7 (cot^(-1) x) + 10 gt0 lie in the interval

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]+9leq0 where [ ] denotes greatest integer function, is

Solution set of inequation (cos^(-1)x)^(2)-(sin^(-1)x)^(2)gt0 is

Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x .

Solution set of inequality (cot^-1x)^2-5cot^-1x+6>0 is (A) (cot 3 , cot2) (B) (-oo, cot3) uu (cot2 , oo) (C) (cot2, oo) (D) None of these

The solution set of the inequation (x-1)/(x-2) gt 2, is

Solve tan^(-1) x gt cot^(-1) x

The solution set of the inequality max {1-x^2,|x - 1|}<1 then

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1...

    Text Solution

    |

  2. Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

    Text Solution

    |

  3. Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) +...

    Text Solution

    |

  4. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  5. If x + 1/x = 2, the principal value of sin^(-1) x is

    Text Solution

    |

  6. If x in ( - pi/2, pi/2), then the value of tan^(-1) ((tan x)/4) + ta...

    Text Solution

    |

  7. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  8. sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] i...

    Text Solution

    |

  9. If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 ...

    Text Solution

    |

  10. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  11. The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec...

    Text Solution

    |

  12. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  13. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  14. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  15. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  16. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  17. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  18. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  19. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |

  20. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |