Home
Class 12
MATHS
If x in ( - pi/2, pi/2), then the valu...

If ` x in ( - pi/2, pi/2)`, then the value of `tan^(-1) ((tan x)/4) + tan^(-1) ((3 sin 2x)/(5 + 3 cos 2x)) ` is

A

`x//2`

B

`2x`

C

`3x`

D

`x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \tan^{-1}\left(\frac{\tan x}{4}\right) + \tan^{-1}\left(\frac{3 \sin 2x}{5 + 3 \cos 2x}\right) \] **Step 1: Use the double angle identities for sine and cosine.** Recall that: \[ \sin 2x = 2 \sin x \cos x \] \[ \cos 2x = 2 \cos^2 x - 1 \] Substituting these into the second term gives us: \[ \tan^{-1}\left(\frac{3 \cdot 2 \sin x \cos x}{5 + 3(2 \cos^2 x - 1)}\right) = \tan^{-1}\left(\frac{6 \sin x \cos x}{5 + 6 \cos^2 x - 3}\right) = \tan^{-1}\left(\frac{6 \sin x \cos x}{2 + 6 \cos^2 x}\right) \] **Step 2: Simplify the expression.** Now we can rewrite the expression as: \[ \tan^{-1}\left(\frac{\tan x}{4}\right) + \tan^{-1}\left(\frac{6 \sin x \cos x}{2 + 6 \cos^2 x}\right) \] **Step 3: Rewrite the second term.** Notice that: \[ \frac{6 \sin x \cos x}{2 + 6 \cos^2 x} = \frac{6 \tan x \cos^2 x}{2 + 6 \cos^2 x} \] **Step 4: Use the formula for the sum of arctangents.** We can use the formula: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] where \( a = \frac{\tan x}{4} \) and \( b = \frac{6 \tan x \cos^2 x}{2 + 6 \cos^2 x} \). **Step 5: Calculate \( a + b \) and \( 1 - ab \).** First, calculate \( a + b \): \[ a + b = \frac{\tan x}{4} + \frac{6 \tan x \cos^2 x}{2 + 6 \cos^2 x} \] Now, calculate \( ab \): \[ ab = \left(\frac{\tan x}{4}\right) \left(\frac{6 \tan x \cos^2 x}{2 + 6 \cos^2 x}\right) = \frac{6 \tan^2 x \cos^2 x}{4(2 + 6 \cos^2 x)} \] **Step 6: Substitute into the formula.** Now we substitute \( a + b \) and \( 1 - ab \) into the formula: \[ \tan^{-1}\left(\frac{\frac{\tan x}{4} + \frac{6 \tan x \cos^2 x}{2 + 6 \cos^2 x}}{1 - \frac{6 \tan^2 x \cos^2 x}{4(2 + 6 \cos^2 x)}}\right) \] **Step 7: Simplify the expression.** After simplification, we find that the expression simplifies to \( x \): \[ \tan^{-1}(\tan x) = x \quad \text{(since \( x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \))} \] Thus, the final answer is: \[ \boxed{x} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

The value of tan(pi+x)tan(pi-x)cot^(2)x is

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Statement I y = tan^(-1) ( tan x) " and " y = cos^(-1) ( cos x) " does not have nay solution , if " x in (pi/2, (3pi)/2) Statement II y = tan^(-1)( tan x) = x - pi, x in (pi/2, (3pi)/2) " and " y = cos^(-1) ( cos x) = {{:(2pi - x", " x in [pi, (3pi)/2]),(" x, " x in [pi/2,pi]):}

If tan ^(-1) 2x + tan ^(-1) 3 xx = (pi)/(4) , then x = ?

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  2. If x + 1/x = 2, the principal value of sin^(-1) x is

    Text Solution

    |

  3. If x in ( - pi/2, pi/2), then the value of tan^(-1) ((tan x)/4) + ta...

    Text Solution

    |

  4. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  5. sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] i...

    Text Solution

    |

  6. If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 ...

    Text Solution

    |

  7. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  8. The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec...

    Text Solution

    |

  9. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  10. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  11. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  12. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  13. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  14. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  15. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  16. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |

  17. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  18. L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-...

    Text Solution

    |

  19. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  20. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |