Home
Class 12
MATHS
sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(...

`sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))]` is

A

1

B

0

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin \left[ \tan^{-1} \left( \frac{1 - x^2}{2x} \right) + \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \right] \), we will use some trigonometric identities and properties of inverse trigonometric functions. ### Step-by-Step Solution: 1. **Identify the first term**: We start with the term \( \tan^{-1} \left( \frac{1 - x^2}{2x} \right) \). We can use the identity: \[ \tan^{-1} \left( \frac{2x}{1 - x^2} \right) = 2 \tan^{-1}(x) \] Therefore, we can rewrite: \[ \tan^{-1} \left( \frac{1 - x^2}{2x} \right) = \tan^{-1} \left( \frac{1}{x} \right) = \cot^{-1}(x) \] 2. **Identify the second term**: Next, we consider the term \( \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \). We can use the identity: \[ \cos^{-1}(y) = \frac{\pi}{2} - \sin^{-1}(y) \] However, we will also recognize that: \[ \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = 2 \tan^{-1}(x) \] 3. **Combine the terms**: Now we have: \[ \tan^{-1} \left( \frac{1 - x^2}{2x} \right) + \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = \cot^{-1}(x) + 2 \tan^{-1}(x) \] 4. **Use the identity for sum of angles**: We know that: \[ \cot^{-1}(x) + \tan^{-1}(x) = \frac{\pi}{2} \] Thus: \[ \cot^{-1}(x) + 2 \tan^{-1}(x) = \frac{\pi}{2} + \tan^{-1}(x) \] 5. **Evaluate the sine**: Now we need to find: \[ \sin \left( \frac{\pi}{2} + \tan^{-1}(x) \right) \] Using the sine addition formula: \[ \sin \left( \frac{\pi}{2} + \theta \right) = \cos(\theta) \] Therefore: \[ \sin \left( \frac{\pi}{2} + \tan^{-1}(x) \right) = \cos(\tan^{-1}(x)) \] 6. **Find the cosine**: We know that: \[ \cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1 + x^2}} \] ### Final Result: Thus, the final result is: \[ \sin \left[ \tan^{-1} \left( \frac{1 - x^2}{2x} \right) + \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \right] = \frac{1}{\sqrt{1 + x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) , then

Prove that : sin^(-1) ""(x)/(sqrt(1 + x^(2))) + cos ^(-1) "" (x + 1)/( sqrt( x^(2) + 2x + 2)) = tan^(-1) ( x^(2) + x + 1)

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

The value of tan{1/2 sin^-1 ((2x)/(1+x^2))+1/2 cos^-1 ((1-x^2)/(1+x^2))} is (A) (2x)/(1-x^2) (B) (2x)/(1-x^2) (C) not defined if x.>=1 (D) 0

Find the value of the following: tan [1/2[sin^(-1) ((2x)/(1+x^2))+cos^(-1) ((1-y^2)/(1+y^2))]], |x| 0 and x y < 1 .

Consider a function f(x)="sin"^(-1) (2x)/(1+x^(2))+"cos"^(-1) (1-x^(2))/(1+x^(2))+"tan"^(-1) (2x)/(1-x^(2))-atan^(-1)x(aepsilonR) , the value of a if f(x)=0 for all x :

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. If x in ( - pi/2, pi/2), then the value of tan^(-1) ((tan x)/4) + ta...

    Text Solution

    |

  2. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  3. sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] i...

    Text Solution

    |

  4. If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 ...

    Text Solution

    |

  5. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  6. The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec...

    Text Solution

    |

  7. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  8. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  9. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  10. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  11. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  12. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  13. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  14. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |

  15. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  16. L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-...

    Text Solution

    |

  17. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  18. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  19. Let f(x)= cos^(-1) ((1-x^2)/(1+x^2))= 2 tan^(-1)x x ge 0 , =-2 tan^(-1...

    Text Solution

    |

  20. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |