Home
Class 12
MATHS
If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(...

If `cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x`, then x is

A

`(a-b)/(1+ab)`

B

`(b-a)/(1 + ab)`

C

`(a +b)/(1 - ab)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) - \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = 2 \tan^{-1}(x), \] we will follow these steps: ### Step 1: Use the property of inverse cosine We know that \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 2 \tan^{-1}(x). \] Using this property, we can rewrite the left-hand side of the equation: \[ \cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) = 2 \tan^{-1}(a), \] and \[ \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = 2 \tan^{-1}(b). \] ### Step 2: Substitute into the equation Substituting these into our original equation gives: \[ 2 \tan^{-1}(a) - 2 \tan^{-1}(b) = 2 \tan^{-1}(x). \] ### Step 3: Simplify the equation Dividing the entire equation by 2, we have: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}(x). \] ### Step 4: Use the property of inverse tangent Using the property of inverse tangent, we know: \[ \tan^{-1}(u) - \tan^{-1}(v) = \tan^{-1}\left(\frac{u-v}{1+uv}\right). \] Applying this property to our equation, we can write: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab}\right). \] ### Step 5: Equate the arguments Since both sides of the equation are equal, we can equate the arguments: \[ x = \frac{a-b}{1+ab}. \] ### Conclusion Thus, the value of \( x \) is \[ \boxed{\frac{a-b}{1+ab}}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos ^(-1) ((1- a^(2))/(1+a^2)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .((a+b)/(1-ab))

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

Solve : sin^(-1)((2a)/(1+a^2)) + cos^(-1)( (1-b^2)/(1+b^2)) = 2 tan^(-1) x,|a|le1, |b|ge 0 .

If |a|lt1|b|lt1and|x|lt1 then the solution of sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2))) is

If sin^(-1)((2a)/(1+a^2))-cos^(-1)((1-b^2)/(1+b^2))=tan^(-1)((2x)/(1-x^2)) , then prove that x=(a-b)/(1+a b)

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) , then

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  2. sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] i...

    Text Solution

    |

  3. If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 ...

    Text Solution

    |

  4. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  5. The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec...

    Text Solution

    |

  6. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  7. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  8. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  9. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  10. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  11. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  12. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  13. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |

  14. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  15. L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-...

    Text Solution

    |

  16. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  17. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  18. Let f(x)= cos^(-1) ((1-x^2)/(1+x^2))= 2 tan^(-1)x x ge 0 , =-2 tan^(-1...

    Text Solution

    |

  19. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |

  20. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |