Home
Class 12
MATHS
The value of cos^-1[cot(sin^-1(sqrt((2-s...

The value of `cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec^-1sqrt2)`

A

0

B

`pi/4`

C

`pi/6`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1} \left[ \cot \left( \sin^{-1} \left( \frac{\sqrt{2 - \sqrt{3}}}{2} \right) + \cos^{-1} \left( \frac{\sqrt{12}}{4} \right) + \sec^{-1} \sqrt{2} \right) \right] \), we will break it down step by step. ### Step 1: Simplify \( \sin^{-1} \left( \frac{\sqrt{2 - \sqrt{3}}}{2} \right) \) Let \( x = \sin^{-1} \left( \frac{\sqrt{2 - \sqrt{3}}}{2} \right) \). Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \sin x = \frac{\sqrt{2 - \sqrt{3}}}{2} \] Thus, \[ \cos x = \sqrt{1 - \left( \frac{\sqrt{2 - \sqrt{3}}}{2} \right)^2} \] Calculating \( \left( \frac{\sqrt{2 - \sqrt{3}}}{2} \right)^2 \): \[ \left( \frac{\sqrt{2 - \sqrt{3}}}{2} \right)^2 = \frac{2 - \sqrt{3}}{4} \] So, \[ 1 - \left( \frac{\sqrt{2 - \sqrt{3}}}{2} \right)^2 = 1 - \frac{2 - \sqrt{3}}{4} = \frac{4 - (2 - \sqrt{3})}{4} = \frac{2 + \sqrt{3}}{4} \] Thus, \[ \cos x = \frac{\sqrt{2 + \sqrt{3}}}{2} \] ### Step 2: Simplify \( \cos^{-1} \left( \frac{\sqrt{12}}{4} \right) \) Calculating \( \frac{\sqrt{12}}{4} \): \[ \frac{\sqrt{12}}{4} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \] Thus, \[ \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) = \frac{\pi}{6} \] ### Step 3: Simplify \( \sec^{-1} \sqrt{2} \) Since \( \sec^{-1} x = \cos^{-1} \left( \frac{1}{x} \right) \): \[ \sec^{-1} \sqrt{2} = \cos^{-1} \left( \frac{1}{\sqrt{2}} \right) = \frac{\pi}{4} \] ### Step 4: Combine the angles Now we have: \[ x + \frac{\pi}{6} + \frac{\pi}{4} \] We need to find \( x \): \[ x = \sin^{-1} \left( \frac{\sqrt{2 - \sqrt{3}}}{2} \right) \] Using the identity for \( \sin^{-1} \): \[ \sin^{-1} \left( \frac{\sqrt{2 - \sqrt{3}}}{2} \right) = \frac{\pi}{12} \] Thus, \[ \frac{\pi}{12} + \frac{\pi}{6} + \frac{\pi}{4} \] Finding a common denominator (which is 12): \[ \frac{\pi}{12} + \frac{2\pi}{12} + \frac{3\pi}{12} = \frac{6\pi}{12} = \frac{\pi}{2} \] ### Step 5: Find \( \cot \left( \frac{\pi}{2} \right) \) \[ \cot \left( \frac{\pi}{2} \right) = 0 \] ### Step 6: Final Calculation Now we need to find: \[ \cos^{-1}(0) = \frac{\pi}{2} \] Thus, the final answer is: \[ \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

The value of sin^(-1)("cot"(sin^(-1)((2-sqrt(3))/4+cos^(-1)(sqrt(12))/4+sec^(-1)sqrt(2))))i s (a) 0 (b) pi/2 (c) pi/3 (d) none of these

cos^-1[sqrt3/2]

Find the value of 4cos[cos^(-1)((1)/(4)(sqrt(6)-sqrt(2)))-cos^(-1)((1)/(4)(sqrt(6)+sqrt(2)))] .

The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3)))))) is

The value of sin^(-1)(3/(sqrt(73)))+cos^(-1)((11)/(sqrt(146)))+cot^(-1)sqrt(3) is (A) (5pi)/(12) (B) (17pi)/(12) (C) (7pi)/(12) (D) None of these

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)(sqrt(2))= (a) 0 (b) pi/4 (c) pi/6 (d) pi/2

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 ...

    Text Solution

    |

  2. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  3. The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec...

    Text Solution

    |

  4. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  5. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  6. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  7. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  8. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  9. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  10. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  11. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |

  12. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  13. L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-...

    Text Solution

    |

  14. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  15. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  16. Let f(x)= cos^(-1) ((1-x^2)/(1+x^2))= 2 tan^(-1)x x ge 0 , =-2 tan^(-1...

    Text Solution

    |

  17. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |

  18. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  19. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  20. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |