Home
Class 12
MATHS
If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-...

If `tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt((1-x^(2))))=alpha" , then " x^(2) ` is

A

`cos 2 alpha`

B

`sin 2 alpha`

C

`tan 2 alpha `

D

`cot 2 alpha `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Set up the equation We start with the equation given in the problem: \[ \tan^{-1}\left(\frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1+x^2} + \sqrt{1-x^2}}\right) = \alpha \] ### Step 2: Rewrite in terms of tangent Using the property of the inverse tangent function, we can rewrite the equation as: \[ \tan(\alpha) = \frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1+x^2} + \sqrt{1-x^2}} \] ### Step 3: Simplify the right-hand side To simplify the right-hand side, we can multiply the numerator and denominator by \(\sqrt{1+x^2} - \sqrt{1-x^2}\): \[ \tan(\alpha) = \frac{(\sqrt{1+x^2} - \sqrt{1-x^2})^2}{(1+x^2) - (1-x^2)} \] ### Step 4: Expand the numerator Expanding the numerator: \[ (\sqrt{1+x^2} - \sqrt{1-x^2})^2 = (1+x^2) + (1-x^2) - 2\sqrt{(1+x^2)(1-x^2)} = 2 - 2\sqrt{(1+x^2)(1-x^2)} \] The denominator simplifies to: \[ (1+x^2) - (1-x^2) = 2x^2 \] ### Step 5: Combine the results Thus, we have: \[ \tan(\alpha) = \frac{2 - 2\sqrt{(1+x^2)(1-x^2)}}{2x^2} = \frac{1 - \sqrt{(1+x^2)(1-x^2)}}{x^2} \] ### Step 6: Rearranging the equation Rearranging gives: \[ x^2 \tan(\alpha) = 1 - \sqrt{(1+x^2)(1-x^2)} \] ### Step 7: Square both sides Squaring both sides: \[ (x^2 \tan(\alpha))^2 = (1 - \sqrt{(1+x^2)(1-x^2)})^2 \] ### Step 8: Expand both sides Expanding the right-hand side: \[ (x^2 \tan(\alpha))^2 = 1 - 2\sqrt{(1+x^2)(1-x^2)} + (1+x^2)(1-x^2) \] The right-hand side simplifies to: \[ 1 - 2\sqrt{(1+x^2)(1-x^2)} + 1 - x^4 \] ### Step 9: Rearranging terms Rearranging gives: \[ x^4 \tan^2(\alpha) + x^4 = 2 - 2\sqrt{(1+x^2)(1-x^2)} \] ### Step 10: Solve for \(x^2\) From here, we can isolate \(x^2\): \[ x^4(\tan^2(\alpha) + 1) = 2 - 2\sqrt{(1+x^2)(1-x^2)} \] Using the identity \(\tan^2(\alpha) + 1 = \sec^2(\alpha)\), we can express \(x^2\) in terms of \(\alpha\): \[ x^2 = \frac{2\sin(2\alpha)}{\sec^2(\alpha)} \] ### Final Result Thus, we find: \[ x^2 = \sin(2\alpha) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha , then x^2= sin2\ alpha (b) sin\ alpha (c) cos2\ alpha (d) cos\ alpha

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx

tan^-1 [(1)/(sqrt(x^2-1))]

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec...

    Text Solution

    |

  2. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  3. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  4. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  5. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  6. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  7. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  8. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  9. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |

  10. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  11. L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-...

    Text Solution

    |

  12. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  13. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  14. Let f(x)= cos^(-1) ((1-x^2)/(1+x^2))= 2 tan^(-1)x x ge 0 , =-2 tan^(-1...

    Text Solution

    |

  15. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |

  16. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  17. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  18. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |

  19. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  20. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |