Home
Class 12
MATHS
If cosec^(-1) ( cosec x) " and " cosec (...

If `cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) ` are equal functions, then the maximum range of value of x is

A

`[- pi/2 , -1] cup[1, pi/2]`

B

`[- pi/2 , 0 ) cup ( 0, pi/2]`

C

`( - infty, -1] cup [1, infty)`

D

`[-1, 0) cup (0,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( \csc^{-1}(\csc x) \) and \( \csc(\csc^{-1} x) \) and determine the conditions under which they are equal. ### Step 1: Understanding the Functions 1. **Function 1: \( \csc^{-1}(\csc x) \)** - The function \( \csc^{-1}(y) \) is defined for \( y \leq -1 \) or \( y \geq 1 \). - For \( \csc^{-1}(\csc x) \) to be defined, \( x \) must be in the range where \( \csc x \) is valid, which is \( x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \) excluding \( x = 0 \). 2. **Function 2: \( \csc(\csc^{-1} x) \)** - The function \( \csc^{-1}(x) \) is defined for \( x \leq -1 \) or \( x \geq 1 \). - Therefore, \( \csc(\csc^{-1} x) = x \) holds true for \( x \leq -1 \) or \( x \geq 1 \). ### Step 2: Setting Up the Equality We need to find the values of \( x \) for which: \[ \csc^{-1}(\csc x) = \csc(\csc^{-1} x) \] ### Step 3: Finding the Range of \( x \) 1. **Range of \( \csc^{-1}(\csc x) \)**: - From the analysis, \( \csc^{-1}(\csc x) \) is defined for \( x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \setminus \{0\} \). 2. **Range of \( \csc(\csc^{-1} x) \)**: - This function is defined for \( x \leq -1 \) or \( x \geq 1 \). ### Step 4: Finding the Intersection of Ranges To find the maximum range of \( x \) such that both functions are equal, we need to find the intersection of the two ranges: - The range from \( \csc^{-1}(\csc x) \) is \( (-\frac{\pi}{2}, \frac{\pi}{2}) \setminus \{0\} \). - The range from \( \csc(\csc^{-1} x) \) is \( (-\infty, -1] \cup [1, \infty) \). ### Step 5: Conclusion The intersection of these ranges gives us: - From \( (-\frac{\pi}{2}, \frac{\pi}{2}) \setminus \{0\} \), the values that satisfy \( x \leq -1 \) or \( x \geq 1 \) are: - \( x \in [1, \frac{\pi}{2}) \) Thus, the maximum range of value of \( x \) is: \[ \text{Maximum range of } x = [1, \frac{\pi}{2}) \] ### Final Answer The maximum range of value of \( x \) is \( [1, \frac{\pi}{2}) \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

cosec^(-1)3x

cosec^(-1)(cos x) is real if

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

Express cot(cosec^(-1)x) as an algebraic function of x .

int (dx)/(sec x + "cosec x")

cosec^(-1)(-x),x in R-(-1,1), is equal to

int1/(sec x + cosec x) dx

int1/(sec x + cosec x) dx

If I=int (dx)/(secx + cosec x), then equals

Solve sec^(-1) x gt cosec^(-1) x

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

    Text Solution

    |

  2. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  3. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  4. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  5. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  6. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  7. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  8. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |

  9. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  10. L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-...

    Text Solution

    |

  11. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  12. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  13. Let f(x)= cos^(-1) ((1-x^2)/(1+x^2))= 2 tan^(-1)x x ge 0 , =-2 tan^(-1...

    Text Solution

    |

  14. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |

  15. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  16. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  17. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |

  18. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  19. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  20. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |