Home
Class 12
MATHS
The value of underset(|x| rarr oo)("lim"...

The value of `underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x)))` is equal to

A

`-1`

B

`sqrt2`

C

`- 1/sqrt2`

D

`1/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the limit \[ \lim_{|x| \to \infty} \cos\left(\tan^{-1}\left(\sin\left(\tan^{-1} x\right)\right)\right), \] we will proceed step by step. ### Step 1: Substitute \( \tan^{-1} x \) Let \( \theta = \tan^{-1} x \). Then, we have: \[ x = \tan \theta. \] ### Step 2: Find \( \sin(\tan^{-1} x) \) Using the identity for sine in terms of tangent, we can express \( \sin(\theta) \): \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{x}{\sqrt{x^2 + 1}}. \] Thus, we have: \[ \sin(\tan^{-1} x) = \frac{x}{\sqrt{x^2 + 1}}. \] ### Step 3: Substitute back into the limit Now, we need to find \( \tan^{-1}(\sin(\tan^{-1} x)) \): \[ \tan^{-1}\left(\frac{x}{\sqrt{x^2 + 1}}\right). \] ### Step 4: Find \( \tan(\tan^{-1}(\sin(\tan^{-1} x))) \) Let \( \phi = \tan^{-1}\left(\frac{x}{\sqrt{x^2 + 1}}\right) \). Then, \[ \tan(\phi) = \frac{x}{\sqrt{x^2 + 1}}. \] ### Step 5: Find \( \cos(\tan^{-1}(\sin(\tan^{-1} x))) \) We can express \( \cos(\phi) \) using the identity: \[ \cos(\phi) = \frac{1}{\sqrt{1 + \tan^2(\phi)}}. \] Substituting \( \tan(\phi) \): \[ \cos(\phi) = \frac{1}{\sqrt{1 + \left(\frac{x}{\sqrt{x^2 + 1}}\right)^2}} = \frac{1}{\sqrt{1 + \frac{x^2}{x^2 + 1}}}. \] ### Step 6: Simplify the expression Now, simplify the expression inside the square root: \[ 1 + \frac{x^2}{x^2 + 1} = \frac{x^2 + 1 + x^2}{x^2 + 1} = \frac{2x^2 + 1}{x^2 + 1}. \] Thus, we have: \[ \cos(\phi) = \frac{1}{\sqrt{\frac{2x^2 + 1}{x^2 + 1}}} = \frac{\sqrt{x^2 + 1}}{\sqrt{2x^2 + 1}}. \] ### Step 7: Evaluate the limit Now we need to evaluate the limit: \[ \lim_{|x| \to \infty} \frac{\sqrt{x^2 + 1}}{\sqrt{2x^2 + 1}}. \] Dividing numerator and denominator by \( |x| \): \[ = \lim_{|x| \to \infty} \frac{\sqrt{1 + \frac{1}{x^2}}}{\sqrt{2 + \frac{1}{x^2}}}. \] As \( |x| \to \infty \), \( \frac{1}{x^2} \to 0 \): \[ = \frac{\sqrt{1 + 0}}{\sqrt{2 + 0}} = \frac{1}{\sqrt{2}}. \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{\sqrt{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

sin(tan^(-1)x),|x| le 1 is equal to :

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

Lt_(x rarr oo) (sin ((1)/(x)))/(tan^(-1)((1)/(x))) is equal to

lim_(xrarr0) (x)/(tan^-1x) is equal to

tan^(-1) ((1-cos x)/(sin x))

y=tan^(-1)(cos x/(1+sin x))

lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

Lt_(x rarr oo) x tan^(-1)"" (2)/(x) equal to

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt...

    Text Solution

    |

  2. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  3. The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1)...

    Text Solution

    |

  4. Complete solution set of (cot^(-1)x)+2(tan^(-1)x)=0, where [] denotes ...

    Text Solution

    |

  5. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  6. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  7. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |

  8. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  9. L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-...

    Text Solution

    |

  10. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  11. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  12. Let f(x)= cos^(-1) ((1-x^2)/(1+x^2))= 2 tan^(-1)x x ge 0 , =-2 tan^(-1...

    Text Solution

    |

  13. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |

  14. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  15. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  16. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |

  17. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  18. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  19. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |

  20. cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

    Text Solution

    |