Home
Class 12
MATHS
L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(...

`L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-1)2xtan^(-1)3xtan^(-1)x|=0,t h e nt h enu m b e r` of values of `x` satisfying the equation is 1 (b) 2 (c) 3 (d) 4

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the determinant: \[ \left| \begin{array}{ccc} \tan^{-1} x & \tan^{-1} 2x & \tan^{-1} 3x \\ \tan^{-1} 3x & \tan^{-1} x & \tan^{-1} 2x \\ \tan^{-1} 2x & \tan^{-1} 3x & \tan^{-1} x \end{array} \right| = 0 \] ### Step 1: Define Variables Let: - \( a = \tan^{-1} x \) - \( b = \tan^{-1} 2x \) - \( c = \tan^{-1} 3x \) Now, we can rewrite the determinant in terms of \( a \), \( b \), and \( c \): \[ \left| \begin{array}{ccc} a & b & c \\ c & a & b \\ b & c & a \end{array} \right| = 0 \] ### Step 2: Use Determinant Properties We can use the property of determinants that states if we add a multiple of one row to another, the value of the determinant remains unchanged. We will add the first row to the second and third rows: \[ \left| \begin{array}{ccc} a & b & c \\ a+c & a+b & b+c \\ b+c & c+a & a+b \end{array} \right| = 0 \] ### Step 3: Factor Out Common Terms Next, we can factor out \( a + b + c \) from the determinant: \[ \left| \begin{array}{ccc} 1 & 1 & 1 \\ c & a & b \\ b & c & a \end{array} \right| = 0 \] ### Step 4: Calculate the Determinant Now, we calculate the determinant: \[ \left| \begin{array}{ccc} 1 & 1 & 1 \\ c & a & b \\ b & c & a \end{array} \right| = 1 \cdot (a^2 - bc) - 1 \cdot (b^2 - ac) + 1 \cdot (c^2 - ab) \] This simplifies to: \[ a^2 + b^2 + c^2 - ab - ac - bc = 0 \] ### Step 5: Analyze the Equation The equation \( a^2 + b^2 + c^2 - ab - ac - bc = 0 \) can be factored as: \[ \frac{1}{2} \left( (a-b)^2 + (b-c)^2 + (c-a)^2 \right) = 0 \] This implies that: \[ a = b = c \] ### Step 6: Find Values of \( x \) From \( a = \tan^{-1} x \), \( b = \tan^{-1} 2x \), and \( c = \tan^{-1} 3x \), we have: \[ \tan^{-1} x = \tan^{-1} 2x = \tan^{-1} 3x \] This leads to the equations: 1. \( x = 2x \) which gives \( x = 0 \) 2. \( x = 3x \) which gives \( x = 0 \) Both equations yield \( x = 0 \) as the only solution. ### Conclusion The number of values of \( x \) satisfying the equation is **1**. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

int \ (2xtan^(- 1)x^2)/(1+x^4)dx

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is (a) 6-2pi (b) 2pi-6 (c) pi-3 (d) 3-pi

inttan^(-1)xdx=xtan^(-1)x+f(x)+C, " find "f(x) .

Solve 3tan2x-4tan3x=tan^2 3xtan2xdot

y=tanxtan2xtan3xtan4x

Evaluate: int_0^1xtan^(-1)xdx

Evaluate: int(xtan^(-1)x^2)/1dx

Find the sum : tanx.tan2x+tan2xtan3x+….+tannx. tan(n+1)x

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n the value of sin^(-1)2x is 6-2pi (b) 2pi-6 pi-3 (d) 3-pi

If f(x) =xtan^(-1)x , then f '(1) is equal to

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -...

    Text Solution

    |

  2. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  3. L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-...

    Text Solution

    |

  4. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  5. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  6. Let f(x)= cos^(-1) ((1-x^2)/(1+x^2))= 2 tan^(-1)x x ge 0 , =-2 tan^(-1...

    Text Solution

    |

  7. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |

  8. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  9. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  10. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |

  11. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  12. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  13. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |

  14. cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

    Text Solution

    |

  15. The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^4+2x^2+3)) is...

    Text Solution

    |

  16. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  17. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  18. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  19. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  20. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |