Home
Class 12
MATHS
Let u = cot^(-1) sqrt(cos 2 theta) - ...

Let `u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta)` , then the value of `sin u` is

A

`cos 2 theta `

B

`sin 2 theta`

C

`tan^(2) theta`

D

`cot^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin u \) where \[ u = \cot^{-1}(\sqrt{\cos 2\theta}) - \tan^{-1}(\sqrt{\cos 2\theta}). \] ### Step 1: Rewrite \( u \) Using the identity \( \cot^{-1}(x) + \tan^{-1}(x) = \frac{\pi}{2} \), we can rewrite \( u \): \[ u = \cot^{-1}(\sqrt{\cos 2\theta}) - \tan^{-1}(\sqrt{\cos 2\theta}) = \frac{\pi}{2} - 2\tan^{-1}(\sqrt{\cos 2\theta}). \] ### Step 2: Substitute \( x \) Let \( x = \tan^{-1}(\sqrt{\cos 2\theta}) \). Then we can express \( u \) as: \[ u = \frac{\pi}{2} - 2x. \] ### Step 3: Find \( \sin u \) Using the sine of a difference identity, we have: \[ \sin u = \sin\left(\frac{\pi}{2} - 2x\right) = \cos(2x). \] ### Step 4: Express \( \cos(2x) \) Using the double angle formula for cosine, we can express \( \cos(2x) \) in terms of \( \tan x \): \[ \cos(2x) = \frac{1 - \tan^2 x}{1 + \tan^2 x}. \] ### Step 5: Substitute \( \tan x \) Since \( x = \tan^{-1}(\sqrt{\cos 2\theta}) \), we have: \[ \tan x = \sqrt{\cos 2\theta}. \] ### Step 6: Substitute into \( \cos(2x) \) Now, substituting \( \tan x \) into the expression for \( \cos(2x) \): \[ \cos(2x) = \frac{1 - \left(\sqrt{\cos 2\theta}\right)^2}{1 + \left(\sqrt{\cos 2\theta}\right)^2} = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}. \] ### Step 7: Simplify the expression Using the identity \( 1 - \cos 2\theta = 2\sin^2 \theta \) and \( 1 + \cos 2\theta = 2\cos^2 \theta \), we can simplify: \[ \cos(2x) = \frac{2\sin^2 \theta}{2\cos^2 \theta} = \frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta. \] ### Conclusion Thus, the value of \( \sin u \) is: \[ \sin u = \tan^2 \theta. \] ### Final Answer The value of \( \sin u \) is \( \tan^2 \theta \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

If u= cot ^(-1) (sqrt(cos 2 theta)) -tan ^(-1)(sqrt(cos 2 theta)) , then prove that : sin u = tan^(2) theta .

int (d ( cos theta))/(sqrt(1-cos^(2) theta))

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

If sin theta+ cos theta = sqrt(2) cos theta, (theta ne 90^(@)) then value of tan theta is

If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))) , then the general value of theta(n in Z)

If M and m denotes maximum and minimum value of sqrt(49cos^2theta + sin^2theta) + sqrt(49sin^2theta+cos^2theta then find the value of (M+m) is

If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek , then the value of k

cos theta=sqrt(1-sin theta)

cos theta=sqrt(1-sin theta)