Home
Class 12
MATHS
Let u = cot^(-1) sqrt(cos 2 theta) - ...

Let `u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta)` , then the value of `sin u` is

A

`cos 2 theta `

B

`sin 2 theta`

C

`tan^(2) theta`

D

`cot^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin u \) where \[ u = \cot^{-1}(\sqrt{\cos 2\theta}) - \tan^{-1}(\sqrt{\cos 2\theta}). \] ### Step 1: Rewrite \( u \) Using the identity \( \cot^{-1}(x) + \tan^{-1}(x) = \frac{\pi}{2} \), we can rewrite \( u \): \[ u = \cot^{-1}(\sqrt{\cos 2\theta}) - \tan^{-1}(\sqrt{\cos 2\theta}) = \frac{\pi}{2} - 2\tan^{-1}(\sqrt{\cos 2\theta}). \] ### Step 2: Substitute \( x \) Let \( x = \tan^{-1}(\sqrt{\cos 2\theta}) \). Then we can express \( u \) as: \[ u = \frac{\pi}{2} - 2x. \] ### Step 3: Find \( \sin u \) Using the sine of a difference identity, we have: \[ \sin u = \sin\left(\frac{\pi}{2} - 2x\right) = \cos(2x). \] ### Step 4: Express \( \cos(2x) \) Using the double angle formula for cosine, we can express \( \cos(2x) \) in terms of \( \tan x \): \[ \cos(2x) = \frac{1 - \tan^2 x}{1 + \tan^2 x}. \] ### Step 5: Substitute \( \tan x \) Since \( x = \tan^{-1}(\sqrt{\cos 2\theta}) \), we have: \[ \tan x = \sqrt{\cos 2\theta}. \] ### Step 6: Substitute into \( \cos(2x) \) Now, substituting \( \tan x \) into the expression for \( \cos(2x) \): \[ \cos(2x) = \frac{1 - \left(\sqrt{\cos 2\theta}\right)^2}{1 + \left(\sqrt{\cos 2\theta}\right)^2} = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}. \] ### Step 7: Simplify the expression Using the identity \( 1 - \cos 2\theta = 2\sin^2 \theta \) and \( 1 + \cos 2\theta = 2\cos^2 \theta \), we can simplify: \[ \cos(2x) = \frac{2\sin^2 \theta}{2\cos^2 \theta} = \frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta. \] ### Conclusion Thus, the value of \( \sin u \) is: \[ \sin u = \tan^2 \theta. \] ### Final Answer The value of \( \sin u \) is \( \tan^2 \theta \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

If u= cot ^(-1) (sqrt(cos 2 theta)) -tan ^(-1)(sqrt(cos 2 theta)) , then prove that : sin u = tan^(2) theta .

int (d ( cos theta))/(sqrt(1-cos^(2) theta))

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

If sin theta+ cos theta = sqrt(2) cos theta, (theta ne 90^(@)) then value of tan theta is

If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))) , then the general value of theta(n in Z)

If M and m denotes maximum and minimum value of sqrt(49cos^2theta + sin^2theta) + sqrt(49sin^2theta+cos^2theta then find the value of (M+m) is

If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek , then the value of k

cos theta=sqrt(1-sin theta)

cos theta=sqrt(1-sin theta)

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. L e t|tan^(-1)xtan^(-1)2xtan^(-1)3xtan^(-1)3xtan^(-1)xtan^(-1)2xtan^(-...

    Text Solution

    |

  2. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  3. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  4. Let f(x)= cos^(-1) ((1-x^2)/(1+x^2))= 2 tan^(-1)x x ge 0 , =-2 tan^(-1...

    Text Solution

    |

  5. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |

  6. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  7. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  8. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |

  9. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  10. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  11. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |

  12. cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

    Text Solution

    |

  13. The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^4+2x^2+3)) is...

    Text Solution

    |

  14. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  15. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  16. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  17. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  18. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  19. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  20. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |