Home
Class 12
MATHS
Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(...

Let `f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x`. Then the sum of the maximum and minimum values of f(x) is

A

`pi`

B

`2pi`

C

`3 pi`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin^{-1}(2x) + \cos^{-1}(2x) + \sec^{-1}(2x) \). ### Step 1: Simplify the function We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus, we can apply this identity to the first two terms of \( f(x) \): \[ f(x) = \sin^{-1}(2x) + \cos^{-1}(2x) + \sec^{-1}(2x) = \frac{\pi}{2} + \sec^{-1}(2x) \] ### Step 2: Determine the range of \( 2x \) The function \( \sec^{-1}(x) \) is defined for \( |x| \geq 1 \). Therefore, for \( \sec^{-1}(2x) \) to be defined, we need: \[ |2x| \geq 1 \implies |x| \geq \frac{1}{2} \] This means \( x \) must be in the intervals \( (-\infty, -\frac{1}{2}] \) or \( [\frac{1}{2}, \infty) \). ### Step 3: Analyze the range of \( \sec^{-1}(2x) \) The principal range of \( \sec^{-1}(x) \) is \( [0, \pi/2) \cup (\pi/2, \pi] \). Therefore, we need to find the minimum and maximum values of \( \sec^{-1}(2x) \) within the defined intervals. - For \( x = \frac{1}{2} \): \[ \sec^{-1}(2 \cdot \frac{1}{2}) = \sec^{-1}(1) = 0 \] - For \( x = -\frac{1}{2} \): \[ \sec^{-1}(2 \cdot -\frac{1}{2}) = \sec^{-1}(-1) = \pi \] ### Step 4: Find the minimum and maximum values of \( f(x) \) From the previous steps: - The minimum value of \( \sec^{-1}(2x) \) occurs at \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = \frac{\pi}{2} + 0 = \frac{\pi}{2} \] - The maximum value of \( \sec^{-1}(2x) \) occurs at \( x = -\frac{1}{2} \): \[ f\left(-\frac{1}{2}\right) = \frac{\pi}{2} + \pi = \frac{3\pi}{2} \] ### Step 5: Calculate the sum of the maximum and minimum values Now we can find the sum of the maximum and minimum values of \( f(x) \): \[ \text{Sum} = \frac{\pi}{2} + \frac{3\pi}{2} = \frac{4\pi}{2} = 2\pi \] ### Final Answer The sum of the maximum and minimum values of \( f(x) \) is \( 2\pi \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

Let f(x)=x+(1)/(x),xne0. Discuss the maximum and minimum value of f(x).

Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

If f(x) = sin^6x+ cos^6 x and M_1 and M_2 , be the maximum and minimum values of f(x) for all values ofx then M_1-M_2 is equal to

Let f(x)=(1)/(pi)(sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10) such that the maximum value of f (x) is m, then find the value of (104 m -90) .

Let f(x)= cos^(-1)((x^(2))/(x^(2)+1)) . Then , the range of the f , is

Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |

  2. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  3. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  4. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |

  5. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  6. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  7. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |

  8. cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

    Text Solution

    |

  9. The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^4+2x^2+3)) is...

    Text Solution

    |

  10. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  11. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  12. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  13. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  14. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  15. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  16. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  17. Which one of the following statement is meaningless ?

    Text Solution

    |

  18. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  19. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  20. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |