Home
Class 12
MATHS
If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(...

If `tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4`where a, b, c , are the sides of `Delta ABC",then" Delta ABC` is

A

Acute - angled triangle

B

Obtuse - angled triangle

C

Right- angled triangle

D

Equilateral triangle

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving inverse tangent functions and determine the type of triangle formed by the sides \(a\), \(b\), and \(c\). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \tan^{-1}\left(\frac{b}{c+a}\right) + \tan^{-1}\left(\frac{c}{a+b}\right) = \frac{\pi}{4} \] 2. **Use the formula for the sum of inverse tangents:** The formula states that: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] Here, let \(x = \frac{b}{c+a}\) and \(y = \frac{c}{a+b}\). 3. **Apply the formula:** \[ \tan^{-1}\left(\frac{\frac{b}{c+a} + \frac{c}{a+b}}{1 - \frac{b}{c+a} \cdot \frac{c}{a+b}}\right) = \frac{\pi}{4} \] 4. **Set the argument of the tangent inverse equal to 1:** Since \(\tan\left(\frac{\pi}{4}\right) = 1\), we have: \[ \frac{\frac{b}{c+a} + \frac{c}{a+b}}{1 - \frac{bc}{(c+a)(a+b)}} = 1 \] 5. **Cross-multiply to eliminate the fraction:** \[ \frac{b}{c+a} + \frac{c}{a+b} = 1 - \frac{bc}{(c+a)(a+b)} \] 6. **Multiply through by \((c+a)(a+b)\) to clear the denominators:** \[ b(a+b) + c(c+a) = (c+a)(a+b) - bc \] 7. **Expand both sides:** - Left side: \(ba + b^2 + c^2 + ac\) - Right side: \(ca + ab + a^2 + ac - bc\) 8. **Set the equation:** \[ ba + b^2 + c^2 + ac = ca + ab + a^2 + ac - bc \] 9. **Cancel out common terms:** \[ b^2 + c^2 = a^2 + bc \] 10. **Rearranging gives us:** \[ a^2 = b^2 + c^2 \] 11. **Conclusion:** The equation \(a^2 = b^2 + c^2\) follows the Pythagorean theorem, which indicates that triangle \(ABC\) is a right-angled triangle. ### Final Answer: Triangle \(ABC\) is a **right-angled triangle**.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Prove that a^(2)+ b^(2) +c^(2) +2abclt2, where a,b,c are the sides of triangle ABC such that a+b+c=2.

In a Delta ABC if b+c=2a and /_A=60^@ then Delta ABC is

If Delta = a^(2)-(b-c)^(2), Delta is the area of the Delta ABC then tan A = ?

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

If tan (x-A)tan (x-B)+tan (x-B)tan (x-C)+tan(x-C)tan (x-A)=1 and A,B and C are the angles of triangle ABC then find x

If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

If cos theta=a/(b+c), cos phi= b/(a+c) and cos psi=c/(a+b) where theta, phi, psi in (0, pi) and a,b,c are sides of triangle ABC then tan^2(theta/2)+tan^2(phi/2)+tan^2(psi/2)=

If in Delta ABC , sides a, b, c are in A.P. then

Let the incircle of a Delta ABC touches sides BC, CA and AB at D,E and F, respectively. Let area of Delta ABC be Delta and thatof DEF be Delta' . If a, b and c are side of Detla ABC , then the value of abc(a+b+c)(Delta')/(Delta^(3)) is (a) 1 (b) 2 (c) 3 (d) 4

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  2. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  3. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |

  4. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  5. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  6. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |

  7. cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

    Text Solution

    |

  8. The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^4+2x^2+3)) is...

    Text Solution

    |

  9. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  10. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  11. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  12. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  13. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  14. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  15. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  16. Which one of the following statement is meaningless ?

    Text Solution

    |

  17. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  18. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  19. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  20. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |