Home
Class 12
MATHS
Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 the...

Let `f(x) =1+2sin(e^x/(e^x+1))` `x ge 0` then `f^(-1)(x) ` is equal to (assuming f is bijectve)

A

`log ((sin^(-1)((x-1)/2))/(1 - sin^(-1) (( x-1)/2))) `

B

`log ((sin (( x-1)/2))/(1- sin((x-1)/2)))`

C

`e^((sin^(-1).((x-1)/2))/(1-sin^(-1)((x-1)/2)))`

D

`e^((sin((x-1)/2))/(1-sin ((x-1)/2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the inverse function \( f^{-1}(x) \) for the function given by \[ f(x) = 1 + 2 \sin\left(\frac{e^x}{e^x + 1}\right) \] where \( x \geq 0 \). ### Step 1: Set \( f(x) = y \) We start by setting \[ y = f(x) = 1 + 2 \sin\left(\frac{e^x}{e^x + 1}\right) \] ### Step 2: Rearrange the equation Rearranging the equation gives us: \[ y - 1 = 2 \sin\left(\frac{e^x}{e^x + 1}\right) \] ### Step 3: Isolate the sine function Now, we isolate the sine function: \[ \sin\left(\frac{e^x}{e^x + 1}\right) = \frac{y - 1}{2} \] ### Step 4: Apply the inverse sine function Next, we apply the inverse sine function: \[ \frac{e^x}{e^x + 1} = \sin^{-1}\left(\frac{y - 1}{2}\right) \] ### Step 5: Rearrange to isolate \( e^x \) Now, we rearrange this equation to isolate \( e^x \): \[ e^x = (e^x + 1) \sin^{-1}\left(\frac{y - 1}{2}\right) \] This leads to: \[ e^x - e^x \sin^{-1}\left(\frac{y - 1}{2}\right) = \sin^{-1}\left(\frac{y - 1}{2}\right) \] ### Step 6: Factor out \( e^x \) Factoring out \( e^x \) gives us: \[ e^x (1 - \sin^{-1}\left(\frac{y - 1}{2}\right)) = \sin^{-1}\left(\frac{y - 1}{2}\right) \] ### Step 7: Solve for \( e^x \) Now, we can solve for \( e^x \): \[ e^x = \frac{\sin^{-1}\left(\frac{y - 1}{2}\right)}{1 - \sin^{-1}\left(\frac{y - 1}{2}\right)} \] ### Step 8: Take the natural logarithm Taking the natural logarithm of both sides gives us: \[ x = \log\left(\frac{\sin^{-1}\left(\frac{y - 1}{2}\right)}{1 - \sin^{-1}\left(\frac{y - 1}{2}\right)}\right) \] ### Step 9: Substitute back to find \( f^{-1}(x) \) Now, substituting \( y \) back with \( x \) (since we are looking for \( f^{-1}(x) \)), we have: \[ f^{-1}(x) = \log\left(\frac{\sin^{-1}\left(\frac{x - 1}{2}\right)}{1 - \sin^{-1}\left(\frac{x - 1}{2}\right)}\right) \] ### Final Result Thus, the inverse function is: \[ f^{-1}(x) = \log\left(\frac{\sin^{-1}\left(\frac{x - 1}{2}\right)}{1 - \sin^{-1}\left(\frac{x - 1}{2}\right)}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

f(x)=e^(x)/([x+1]),x ge 0

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

If f(x)=e^(1-x) then f(x) is

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  2. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  3. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |

  4. cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

    Text Solution

    |

  5. The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^4+2x^2+3)) is...

    Text Solution

    |

  6. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  7. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  8. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  9. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  10. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  11. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  12. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  13. Which one of the following statement is meaningless ?

    Text Solution

    |

  14. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  15. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  16. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  17. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  18. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  19. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  20. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |