Home
Class 12
MATHS
For any real number x ge 1, the express...

For any real number ` x ge 1`, the expression
`sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x)` is equal to

A

1

B

2

C

`2x^(2)`

D

`2sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec^2(\tan^{-1} x) - \tan^2(\sec^{-1} x) \) for any real number \( x \geq 1 \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sec^2(\tan^{-1} x) - \tan^2(\sec^{-1} x) \] ### Step 2: Let \( \tan^{-1} x = \alpha \) Let \( \tan^{-1} x = \alpha \). Then, we have: \[ x = \tan \alpha \] ### Step 3: Find \( \sec^2(\tan^{-1} x) \) Using the identity \( \sec^2 \alpha = 1 + \tan^2 \alpha \): \[ \sec^2(\tan^{-1} x) = \sec^2 \alpha = 1 + \tan^2 \alpha = 1 + x^2 \] ### Step 4: Let \( \sec^{-1} x = \beta \) Now, let \( \sec^{-1} x = \beta \). Then, we have: \[ x = \sec \beta \] ### Step 5: Find \( \tan^2(\sec^{-1} x) \) Using the identity \( \tan^2 \beta = \sec^2 \beta - 1 \): \[ \tan^2(\sec^{-1} x) = \tan^2 \beta = \sec^2 \beta - 1 = x^2 - 1 \] ### Step 6: Substitute back into the expression Now we substitute the values we found back into the original expression: \[ \sec^2(\tan^{-1} x) - \tan^2(\sec^{-1} x) = (1 + x^2) - (x^2 - 1) \] ### Step 7: Simplify the expression Simplifying the expression gives us: \[ 1 + x^2 - x^2 + 1 = 2 \] ### Conclusion Thus, the value of the expression \( \sec^2(\tan^{-1} x) - \tan^2(\sec^{-1} x) \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

int " sec (tan"^(_1)" x ) dx "

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

Value of the expression (sec1 1^(@)sec1 9^(@)-2cot7 1^(@))/tan11^(@) is equal to

sec^-1((1+tan ^2x)/(1-tan ^2 x))

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x .

The range of the function f(x) = sec^(-1) ( x) + tan ^(-1) (x) ,is

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

int(sec x)/(tan^(2)x)dx

The derivative of sec (tan^(-1)x) w.r.t.x is

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  2. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  3. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  4. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  5. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  6. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  7. Which one of the following statement is meaningless ?

    Text Solution

    |

  8. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  9. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  10. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  11. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  12. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  13. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  14. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  15. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  16. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  17. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  18. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  19. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  20. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |