Home
Class 12
MATHS
Let f : R to [0, pi/2) be defined by f ...

Let `f : R to [0, pi/2)` be defined by `f ( x) = tan^(-1) ( 3x^(2) + 6x + a)". If " f(x)` is an onto function . then the value of a si

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( a \) such that the function \( f(x) = \tan^{-1}(3x^2 + 6x + a) \) is an onto function from \( \mathbb{R} \) to \( [0, \frac{\pi}{2}) \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) = \tan^{-1}(3x^2 + 6x + a) \) maps real numbers to the interval \( [0, \frac{\pi}{2}) \). For \( f(x) \) to be onto, the expression inside the arctangent must cover all values from \( 0 \) to \( +\infty \). 2. **Finding the Quadratic Expression**: The expression \( 3x^2 + 6x + a \) is a quadratic function in \( x \). We can analyze its behavior by determining its minimum value. 3. **Finding the Vertex**: The vertex of a quadratic \( ax^2 + bx + c \) occurs at \( x = -\frac{b}{2a} \). Here, \( a = 3 \) and \( b = 6 \): \[ x = -\frac{6}{2 \cdot 3} = -1 \] 4. **Calculating the Minimum Value**: Substitute \( x = -1 \) back into the quadratic: \[ 3(-1)^2 + 6(-1) + a = 3 - 6 + a = a - 3 \] The minimum value of \( 3x^2 + 6x + a \) is \( a - 3 \). 5. **Setting the Minimum Value**: For \( f(x) \) to be onto, the minimum value \( a - 3 \) must be \( 0 \) (since \( f(x) \) must reach \( 0 \)): \[ a - 3 = 0 \implies a = 3 \] 6. **Conclusion**: The value of \( a \) that makes \( f(x) \) onto is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Let f : [-3, 3] rarr R defined by f(x) = [(x^(2))/(a)] tan ax + sex ax . Then If f(x) is an odd function, then

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

Let f: R to R be a function defined as f (x) = 3x+ 7 , x in R . Show that f is an onto functions.

If f:R rarr [pi/6,pi/2], f(x)=sin^(-1)((x^(2)-a)/(x^(2)+1)) is an onto function, the set of values a is

Let f: R ->[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the set of values of a for which f is onto is (a) (0,oo) (b) [2,1] (c) [1/4,oo] (d) none of these

A function f :Rto R is defined as f (x) =3x ^(2) +1. then f ^(-1)(x) is :

A function f :Rto R is defined as f (x) =3x ^(2) +1. then f ^(-1)(x) is :

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

Let f : R rarr R be defined by f(x) = x^(2) - 3x + 4 for all x in R , then f (2) is equal to

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  2. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  3. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  4. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  5. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  6. Which one of the following statement is meaningless ?

    Text Solution

    |

  7. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  8. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  9. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  10. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  11. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  12. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  13. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  14. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  15. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  16. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  17. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  18. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  19. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |

  20. If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0), then the max...

    Text Solution

    |