Home
Class 12
MATHS
The value of expression tan^(- 1)((sqrt(...

The value of expression `tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-cos^(- 1)((sqrt(10))/10)`

A

`cot^(-1) ((1+sqrt2)/(1-sqrt2))`

B

`cot^(-1) ((sqrt2 + 1)/(sqrt2-1))`

C

`- pi + cot^(-1) ((1+sqrt2)/(1 - sqrt2))`

D

`pi - cot^(-1) ((1-sqrt2)/(1 + sqrt2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{\sqrt{2}}{2}\right) + \sin^{-1}\left(\frac{\sqrt{5}}{5}\right) - \cos^{-1}\left(\frac{\sqrt{10}}{10}\right) \), we will break it down step by step. ### Step 1: Simplify the Inverse Trigonometric Functions We start by rewriting the inverse trigonometric functions in terms of their equivalent angles. 1. **For \( \tan^{-1}\left(\frac{\sqrt{2}}{2}\right) \)**: \[ \tan^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \] 2. **For \( \sin^{-1}\left(\frac{\sqrt{5}}{5}\right) \)**: Let \( y = \sin^{-1}\left(\frac{\sqrt{5}}{5}\right) \). Therefore, \( \sin y = \frac{\sqrt{5}}{5} \). - In a right triangle, if the opposite side is \( \sqrt{5} \) and the hypotenuse is \( 5 \), the adjacent side can be calculated using the Pythagorean theorem: \[ \text{Adjacent} = \sqrt{5^2 - (\sqrt{5})^2} = \sqrt{25 - 5} = \sqrt{20} = 2\sqrt{5} \] - Therefore, \( \tan y = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{\sqrt{5}}{2\sqrt{5}} = \frac{1}{2} \). - Hence, \( y = \tan^{-1}\left(\frac{1}{2}\right) \). 3. **For \( \cos^{-1}\left(\frac{\sqrt{10}}{10}\right) \)**: Let \( z = \cos^{-1}\left(\frac{\sqrt{10}}{10}\right) \). Therefore, \( \cos z = \frac{\sqrt{10}}{10} \). - In a right triangle, if the adjacent side is \( \sqrt{10} \) and the hypotenuse is \( 10 \), the opposite side can be calculated: \[ \text{Opposite} = \sqrt{10^2 - (\sqrt{10})^2} = \sqrt{100 - 10} = \sqrt{90} = 3\sqrt{10} \] - Therefore, \( \tan z = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{3\sqrt{10}}{\sqrt{10}} = 3 \). - Hence, \( z = \tan^{-1}(3) \). ### Step 2: Substitute Back into the Expression Now substituting back into the expression: \[ \frac{\pi}{4} + \tan^{-1}\left(\frac{1}{2}\right) - \tan^{-1}(3) \] ### Step 3: Use the Formula for \( \tan^{-1} \) Using the formula for the difference of two inverse tangents: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \quad \text{if } ab < 1 \] We can rewrite: \[ \tan^{-1}\left(\frac{1}{2}\right) - \tan^{-1}(3) = \tan^{-1}\left(\frac{\frac{1}{2} - 3}{1 + \frac{1}{2} \cdot 3}\right) \] Calculating: - \( a = \frac{1}{2} \) - \( b = 3 \) Calculating the numerator: \[ \frac{1}{2} - 3 = \frac{1 - 6}{2} = \frac{-5}{2} \] Calculating the denominator: \[ 1 + \frac{3}{2} = \frac{2 + 3}{2} = \frac{5}{2} \] Thus: \[ \tan^{-1}\left(\frac{-5/2}{5/2}\right) = \tan^{-1}(-1) = -\frac{\pi}{4} \] ### Step 4: Combine the Results Now we have: \[ \frac{\pi}{4} - \frac{\pi}{4} = 0 \] ### Final Result Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))

Find the value of expression: sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))

Value of x satisfying tan(sec^(- 1)x)=sin(cos^(- 1)(1/(sqrt(5))))

The value of tan(1/2 cos^(-1)(2/(sqrt(5)))) is

For the principal values, evaluate each of the following : (i) sin^(-1)(-1/2)+2cos^(-1)(-(sqrt(3))/2) (ii) sin^(-1)(-(sqrt(3))/2)+cos^(-1)((sqrt(3))/2)

The value of tan[(1)/(2)cos^(-1)((sqrt(5))/(3))] is :

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  2. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  3. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  4. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  5. Which one of the following statement is meaningless ?

    Text Solution

    |

  6. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  7. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  8. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  9. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  10. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  11. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  12. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  13. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  14. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  15. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  16. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  17. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  18. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |

  19. If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0), then the max...

    Text Solution

    |

  20. The value of Sigma(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equ...

    Text Solution

    |