Home
Class 12
MATHS
The value of sec ( 2 cot^(-1) 2 + cos^(-...

The value of `sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) ` is equal to

A

`25/24`

B

` - 24/7`

C

`25/7`

D

`- 25/7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sec(2 \cot^{-1}(2) + \cos^{-1}(\frac{3}{5})) \), we can follow these steps: ### Step 1: Convert \( \cot^{-1}(2) \) to \( \tan^{-1} \) Let \( x = \cot^{-1}(2) \). Then, we have: \[ \cot(x) = 2 \implies \tan(x) = \frac{1}{\cot(x)} = \frac{1}{2} \] Thus, we can write: \[ x = \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 2: Calculate \( 2 \cot^{-1}(2) \) Now we need to find \( 2x \): \[ 2x = 2 \tan^{-1}\left(\frac{1}{2}\right) \] Using the double angle formula for tangent: \[ \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} = \frac{2 \cdot \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2} = \frac{1}{1 - \frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \] Thus, we have: \[ 2 \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{4}{3}\right) \] ### Step 3: Convert \( \cos^{-1}(\frac{3}{5}) \) to \( \sin^{-1} \) Let \( y = \cos^{-1}\left(\frac{3}{5}\right) \). Then: \[ \cos(y) = \frac{3}{5} \] To find \( \sin(y) \), we use the Pythagorean identity: \[ \sin^2(y) + \cos^2(y) = 1 \implies \sin^2(y) = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \implies \sin(y) = \frac{4}{5} \] ### Step 4: Calculate \( \tan(y) \) Now, we can find \( \tan(y) \): \[ \tan(y) = \frac{\sin(y)}{\cos(y)} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] ### Step 5: Combine the angles Now, we need to find: \[ \sec(2 \cot^{-1}(2) + \cos^{-1}(\frac{3}{5})) = \sec\left(\tan^{-1}\left(\frac{4}{3}\right) + \cos^{-1}\left(\frac{3}{5}\right)\right) \] Using the formula for the tangent of the sum of angles: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Here, \( A = \tan^{-1}\left(\frac{4}{3}\right) \) and \( B = \cos^{-1}\left(\frac{3}{5}\right) \): \[ \tan(A) = \frac{4}{3}, \quad \tan(B) = \frac{4}{3} \] Thus: \[ \tan(A + B) = \frac{\frac{4}{3} + \frac{4}{3}}{1 - \left(\frac{4}{3}\right)\left(\frac{4}{3}\right)} = \frac{\frac{8}{3}}{1 - \frac{16}{9}} = \frac{\frac{8}{3}}{-\frac{7}{9}} = -\frac{8 \cdot 9}{3 \cdot 7} = -\frac{24}{7} \] ### Step 6: Find \( \sec(A + B) \) Now, we find: \[ \sec(A + B) = \frac{1}{\cos(A + B)} = \sqrt{1 + \tan^2(A + B)} = \sqrt{1 + \left(-\frac{24}{7}\right)^2} = \sqrt{1 + \frac{576}{49}} = \sqrt{\frac{625}{49}} = \frac{25}{7} \] ### Final Answer Thus, the value of \( \sec(2 \cot^{-1}(2) + \cos^{-1}(\frac{3}{5})) \) is: \[ \frac{25}{7} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The value of cos (1/2 cos^(-1) . 1/8) is equal to

sec^(2) (tan^(-1) 2) + cosec^(2) (cot^(-1) 3) is equal to

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

The value of sin{cot^(-1)[cos(cot^(-1)((1)/(x)))]} is equal to (x gt0)

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to cot^(-1)x (b) cot^(-1)1/x tan^(-1)x (d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is

1/2cos^(-1)(3/5) equals

The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  2. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  3. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  4. Which one of the following statement is meaningless ?

    Text Solution

    |

  5. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  6. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  7. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  8. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  9. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  10. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  11. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  12. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  13. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  14. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  15. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  16. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  17. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |

  18. If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0), then the max...

    Text Solution

    |

  19. The value of Sigma(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equ...

    Text Solution

    |

  20. The range of the function , f (x) = tan^(-1) ((1+x)/(1 - x)) - tan^(...

    Text Solution

    |