Home
Class 12
MATHS
The number k is such that tan { arc tan...

The number k is such that `tan { arc tan (2) + arc tan (20 k) } = k`. The sum of all possible values of k is

A

`- 19/40`

B

` - 21/40`

C

0

D

`1/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\tan^{-1}(2) + \tan^{-1}(20k)) = k \), we will follow these steps: ### Step 1: Rewrite the equation using inverse tangent properties We know that \( \tan(\tan^{-1}(a) + \tan^{-1}(b)) = \frac{a + b}{1 - ab} \). Applying this to our equation: \[ \tan(\tan^{-1}(2) + \tan^{-1}(20k)) = \frac{2 + 20k}{1 - (2)(20k)} \] ### Step 2: Set the equation equal to \( k \) Now we set the expression equal to \( k \): \[ \frac{2 + 20k}{1 - 40k} = k \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ 2 + 20k = k(1 - 40k) \] ### Step 4: Expand the right side Expanding the right side, we have: \[ 2 + 20k = k - 40k^2 \] ### Step 5: Rearrange the equation Rearranging all terms to one side results in: \[ 40k^2 + 20k - k + 2 = 0 \] This simplifies to: \[ 40k^2 + 19k + 2 = 0 \] ### Step 6: Apply the quadratic formula Using the quadratic formula \( k = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 40, b = 19, c = 2 \): \[ k = \frac{-19 \pm \sqrt{19^2 - 4 \cdot 40 \cdot 2}}{2 \cdot 40} \] ### Step 7: Calculate the discriminant Calculating the discriminant: \[ 19^2 - 4 \cdot 40 \cdot 2 = 361 - 320 = 41 \] ### Step 8: Substitute back into the formula Now substituting back: \[ k = \frac{-19 \pm \sqrt{41}}{80} \] ### Step 9: Find the sum of the roots The sum of the roots of a quadratic equation \( ax^2 + bx + c = 0 \) is given by \( -\frac{b}{a} \). Thus, the sum of the roots here is: \[ -\frac{19}{40} \] ### Final Answer The sum of all possible values of \( k \) is: \[ \boxed{-\frac{19}{40}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate that : 2 arc sin (1/2) + 3 arc tan (-1) +2 arc cos (- 1/2)

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if xy+yz+zx=1 , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x+y+z=xyz , then

If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C , then the value of k is

If int tan^(2) kx dx= (tan 3x)/(3)-x + C , find the value of k

If tan (pi/12 - x) , tan (pi/12) , tan (pi/12 + x) in G.P. then sum of all the solutions in [0,314] is k pi . Find k

If tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(2)A) , then k is equal to

If the magnetic field at P can be written as K tan (alpha/2) ,

The mean of 40 observations 20 and their standard deviation is 5. If the sum of the square of the observations k, then the value of (k)/(1000) is

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Which one of the following statement is meaningless ?

    Text Solution

    |

  2. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  3. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  4. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  5. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  6. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  7. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  8. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  9. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  10. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  11. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  12. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  13. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  14. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |

  15. If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0), then the max...

    Text Solution

    |

  16. The value of Sigma(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equ...

    Text Solution

    |

  17. The range of the function , f (x) = tan^(-1) ((1+x)/(1 - x)) - tan^(...

    Text Solution

    |

  18. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  19. Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1...

    Text Solution

    |

  20. Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) ...

    Text Solution

    |