Home
Class 12
MATHS
The value of Sigma( r =2)^( infty) tan^...

The value of ` Sigma_( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ` , is

A

`pi/4`

B

`pi/2`

C

`(3pi)/4`

D

`(5pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite series: \[ \sum_{r=2}^{\infty} \tan^{-1} \left( \frac{1}{r^2 - 5r + 7} \right) \] ### Step 1: Simplify the Argument of the Inverse Tangent First, we simplify the expression inside the series. The quadratic expression can be rewritten: \[ r^2 - 5r + 7 = (r - 3)(r - 2) + 1 \] This allows us to express the series as: \[ \sum_{r=2}^{\infty} \tan^{-1} \left( \frac{1}{(r-3)(r-2) + 1} \right) \] ### Step 2: Use the Inverse Tangent Identity We can use the identity for the difference of inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left( \frac{a-b}{1+ab} \right) \] In our case, we set \( a = r - 2 \) and \( b = r - 3 \): \[ \tan^{-1}(r - 2) - \tan^{-1}(r - 3) = \tan^{-1}\left( \frac{(r-2) - (r-3)}{1 + (r-2)(r-3)} \right) = \tan^{-1}\left( \frac{1}{(r-3)(r-2) + 1} \right) \] ### Step 3: Rewrite the Series Thus, we can rewrite our series as: \[ \sum_{r=2}^{\infty} \left( \tan^{-1}(r - 2) - \tan^{-1}(r - 3) \right) \] ### Step 4: Recognize the Telescoping Nature This series is telescoping. When we expand it, we see: \[ \left( \tan^{-1}(0) - \tan^{-1}(-1) \right) + \left( \tan^{-1}(1) - \tan^{-1}(0) \right) + \left( \tan^{-1}(2) - \tan^{-1}(1) \right) + \ldots \] Most terms cancel out, leaving us with: \[ \lim_{n \to \infty} \left( \tan^{-1}(n - 2) - \tan^{-1}(0) \right) \] ### Step 5: Evaluate the Limits As \( n \to \infty \): \[ \tan^{-1}(n - 2) \to \frac{\pi}{2} \] and \[ \tan^{-1}(0) = 0 \] Thus, we have: \[ \frac{\pi}{2} - \tan^{-1}(-1) = \frac{\pi}{2} + \frac{\pi}{4} \] ### Step 6: Final Calculation Combining these results gives: \[ \frac{\pi}{2} + \frac{\pi}{4} = \frac{2\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{4} \] ### Conclusion Therefore, the value of the infinite series is: \[ \sum_{r=2}^{\infty} \tan^{-1} \left( \frac{1}{r^2 - 5r + 7} \right) = \frac{3\pi}{4} \] ### Final Answer The correct option is \( \frac{3\pi}{4} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The value of Sigma_(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equal to

The value of Sigma_(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equal to

Sigma_(r=1)^(infty) tan^(-1)(1)/(2r^(2))=t then tan t is equal to

Find the value of sum_(r=0)^(oo) tan^(-1) ((1)/(1 + r + r^(2)))

The value of Sigma_(r=1)^(n) (a+r+ar)(-a)^r is equal to

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

The value of tan sum_(r=1)^oo tan^-1 (4/(4r^2 +3))=

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

Find the value of lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3)))) .

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  2. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  3. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  4. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  5. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  6. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  7. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  8. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  9. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  10. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  11. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  12. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  13. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |

  14. If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0), then the max...

    Text Solution

    |

  15. The value of Sigma(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equ...

    Text Solution

    |

  16. The range of the function , f (x) = tan^(-1) ((1+x)/(1 - x)) - tan^(...

    Text Solution

    |

  17. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  18. Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1...

    Text Solution

    |

  19. Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) ...

    Text Solution

    |

  20. Which one of the following function contains only one integer in its ...

    Text Solution

    |