Home
Class 12
MATHS
If x = tan^(-1) 1 - cos^(-1) ( - 1/2) +...

If `x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 cos^(-1) (1/8))`, then

A

` x = pi y`

B

` y = pi x`

C

` tan x = - (4//3) y`

D

` tan x = ( 4//3) y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions for \( x \) and \( y \) given in the question and then check which of the provided options is correct. ### Step 1: Evaluate \( x \) Given: \[ x = \tan^{-1}(1) - \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(\frac{1}{2}\right) \] 1. **Calculate \( \tan^{-1}(1) \)**: \[ \tan^{-1}(1) = \frac{\pi}{4} \] 2. **Calculate \( \cos^{-1}\left(-\frac{1}{2}\right) \)**: \[ \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] 3. **Calculate \( \sin^{-1}\left(\frac{1}{2}\right) \)**: \[ \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] 4. **Substituting values into \( x \)**: \[ x = \frac{\pi}{4} - \frac{2\pi}{3} + \frac{\pi}{6} \] 5. **Finding a common denominator (12)**: \[ x = \frac{3\pi}{12} - \frac{8\pi}{12} + \frac{2\pi}{12} = \frac{3\pi - 8\pi + 2\pi}{12} = \frac{-3\pi}{12} = -\frac{\pi}{4} \] ### Step 2: Evaluate \( y \) Given: \[ y = \cos\left(\frac{1}{2} \cos^{-1}\left(\frac{1}{8}\right)\right) \] 1. **Let \( \theta = \cos^{-1}\left(\frac{1}{8}\right) \)**: \[ \cos(\theta) = \frac{1}{8} \] 2. **Using the half-angle formula**: \[ y = \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} = \sqrt{\frac{1 + \frac{1}{8}}{2}} = \sqrt{\frac{\frac{9}{8}}{2}} = \sqrt{\frac{9}{16}} = \frac{3}{4} \] ### Step 3: Check the options Now we have: - \( x = -\frac{\pi}{4} \) - \( y = \frac{3}{4} \) 1. **Option A: \( x = \pi y \)**: \[ -\frac{\pi}{4} \neq \pi \cdot \frac{3}{4} \quad \text{(not true)} \] 2. **Option B: \( y = \pi x \)**: \[ \frac{3}{4} \neq \pi \cdot \left(-\frac{\pi}{4}\right) \quad \text{(not true)} \] 3. **Option C: \( \tan(x) = -\frac{4}{3}y \)**: \[ \tan\left(-\frac{\pi}{4}\right) = -1 \quad \text{and} \quad -\frac{4}{3} \cdot \frac{3}{4} = -1 \quad \text{(true)} \] 4. **Option D: \( \tan(x) = \frac{4}{3}y \)**: \[ -1 \neq \frac{4}{3} \cdot \frac{3}{4} = 1 \quad \text{(not true)} \] ### Conclusion The correct option is: \[ \text{Option C: } \tan(x) = -\frac{4}{3}y \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: tan^(-1)1+cos^(-1)(-1/2)+sin^(-1)(-1/2)

find the value of tan^(-1)(1)+cos^(-1)(1/2)+sin^(-1)(-1/2)

tan^(-1) ((1-cos x)/(sin x))

Find the value of: tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2)

The value of 2cos^(-1)(-1/2)-2 sin^(-1)(-1/2)-cos^(-1)(-1) is

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and " sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = pi/6 " , then " ( 5 sin^(-1) x)/( sin^(-1) y) is

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)+sin(sin^(-1)x)))} , then sum_(r=2)^(10)f(1/r) is _______ .

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  2. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  3. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  4. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  5. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  6. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  7. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  8. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  9. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  10. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  11. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  12. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |

  13. If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0), then the max...

    Text Solution

    |

  14. The value of Sigma(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equ...

    Text Solution

    |

  15. The range of the function , f (x) = tan^(-1) ((1+x)/(1 - x)) - tan^(...

    Text Solution

    |

  16. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  17. Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1...

    Text Solution

    |

  18. Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) ...

    Text Solution

    |

  19. Which one of the following function contains only one integer in its ...

    Text Solution

    |

  20. If range of the function f(x) = tan^(-1) ( 3x^(2) + bx + 3) , x in R "...

    Text Solution

    |