Home
Class 12
MATHS
sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) i...

`sum_(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2)))` is equal to (A) `tan ^-1 (2)+tan^-1 (3)` (B) `4tan^-1 (1)` (C) `pi/2` (D) `sec^-1(-sqrt2)`

A

`tan^(-1). 1/2 + tan^(-1). 2/3`

B

`4 tan^(-1) 1`

C

`pi/2`

D

`sec^(-1) ( - sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given infinite series \( \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{4n}{n^4 - 2n^2 + 2}\right) \), we will follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent We start with the expression inside the summation: \[ \tan^{-1}\left(\frac{4n}{n^4 - 2n^2 + 2}\right) \] We can rewrite the denominator: \[ n^4 - 2n^2 + 2 = (n^2 - 1)^2 + 1 \] Thus, we have: \[ \tan^{-1}\left(\frac{4n}{(n^2 - 1)^2 + 1}\right) \] ### Step 2: Use the Identity for Inverse Tangent We can express \( \frac{4n}{(n^2 - 1)^2 + 1} \) in a form suitable for the tangent subtraction formula: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab}\right) \] We can rewrite \( 4n \) as: \[ 4n = (n+1)^2 - (n-1)^2 \] This allows us to express the argument as: \[ \tan^{-1}\left(\frac{(n+1)^2 - (n-1)^2}{(n^2 - 1)^2 + 1}\right) \] ### Step 3: Apply the Inverse Tangent Formula Using the identity, we can express: \[ \tan^{-1}(n+1) - \tan^{-1}(n-1) \] Thus, we can rewrite our series: \[ \sum_{n=1}^{\infty} \left( \tan^{-1}(n+1) - \tan^{-1}(n-1) \right) \] ### Step 4: Recognize the Telescoping Series Notice that this is a telescoping series: \[ \sum_{n=1}^{\infty} \left( \tan^{-1}(n+1) - \tan^{-1}(n-1) \right) \] This series will cancel out many terms: - The first term from \( n=1 \) gives \( \tan^{-1}(2) - \tan^{-1}(0) \) - The last term as \( n \to \infty \) gives \( \tan^{-1}(\infty) - \tan^{-1}(0) \) ### Step 5: Evaluate the Limits As \( n \to \infty \), \( \tan^{-1}(n+1) \to \frac{\pi}{2} \) and \( \tan^{-1}(0) = 0 \). Thus, we have: \[ \lim_{n \to \infty} \left( \tan^{-1}(n+1) - \tan^{-1}(n-1) \right) = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Conclusion The value of the infinite series is: \[ \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{4n}{n^4 - 2n^2 + 2}\right) = \frac{\pi}{2} \] ### Final Answer Thus, the answer is \( \frac{\pi}{2} \), which corresponds to option (C).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

sum_(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

Prove that: tan^-1 (1/3)+tan^-1 (2/9)+tan^-1 (4/33)+… tooo= pi/4

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

sum_(r=1)^nsin^(-1)((sqrt(r)-sqrt(r-1))/(sqrt(r(r+1)))) is equal to (a) tan^(-1)(sqrt(n))-pi/4 (b) tan^(-1)(sqrt(n+1))-pi/4 (c) tan^(-1)(sqrt(n)) (d) tan^(-1)(sqrt(n)+1)

2tan^(-1)(-2) is equal to (a) -cos t^(-1)((-3)/5) (b) -pi+cos^(-1)3/5 (c) -pi/2+tan^(-1)(-3/4) (d) -picot^(-1)(-3/4)

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  2. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  3. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  4. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  5. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  6. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  7. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  8. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  9. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  10. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  11. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  12. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |

  13. If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0), then the max...

    Text Solution

    |

  14. The value of Sigma(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equ...

    Text Solution

    |

  15. The range of the function , f (x) = tan^(-1) ((1+x)/(1 - x)) - tan^(...

    Text Solution

    |

  16. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  17. Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1...

    Text Solution

    |

  18. Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) ...

    Text Solution

    |

  19. Which one of the following function contains only one integer in its ...

    Text Solution

    |

  20. If range of the function f(x) = tan^(-1) ( 3x^(2) + bx + 3) , x in R "...

    Text Solution

    |