Home
Class 12
MATHS
Number of solutions of the equation l...

Number of solutions of the equation
`log_(10) ( sqrt(5 cos^(-1) x -1 )) + 1/2 log_(10) ( 2 cos^(-1) x + 3) + log_(10)sqrt5 = 1 ` is

A

0

B

1

C

more than one but finite

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \log_{10} \left( \sqrt{5 \cos^{-1} x - 1} \right) + \frac{1}{2} \log_{10} \left( 2 \cos^{-1} x + 3 \right) + \log_{10} \sqrt{5} = 1, \] we will follow these steps: ### Step 1: Simplify the logarithmic expressions Using the property of logarithms, \( \log_{10}(a^b) = b \log_{10}(a) \), we can rewrite the equation: \[ \frac{1}{2} \log_{10} (5 \cos^{-1} x - 1) + \frac{1}{2} \log_{10} (2 \cos^{-1} x + 3) + \log_{10} \sqrt{5} = 1. \] ### Step 2: Combine the logarithms Factor out \( \frac{1}{2} \) from the first two logarithmic terms: \[ \frac{1}{2} \left( \log_{10} (5 \cos^{-1} x - 1) + \log_{10} (2 \cos^{-1} x + 3) \right) + \log_{10} \sqrt{5} = 1. \] This can be rewritten as: \[ \frac{1}{2} \log_{10} \left( (5 \cos^{-1} x - 1)(2 \cos^{-1} x + 3) \right) + \log_{10} \sqrt{5} = 1. \] ### Step 3: Eliminate the logarithm Multiply both sides by 2: \[ \log_{10} \left( (5 \cos^{-1} x - 1)(2 \cos^{-1} x + 3) \right) + 2 \log_{10} \sqrt{5} = 2. \] Using the property \( \log_{10} a + \log_{10} b = \log_{10} (ab) \): \[ \log_{10} \left( (5 \cos^{-1} x - 1)(2 \cos^{-1} x + 3) \cdot 5 \right) = 2. \] ### Step 4: Exponentiate to remove the logarithm Exponentiate both sides: \[ (5 \cos^{-1} x - 1)(2 \cos^{-1} x + 3) \cdot 5 = 10^2 = 100. \] ### Step 5: Rearrange the equation This simplifies to: \[ (5 \cos^{-1} x - 1)(2 \cos^{-1} x + 3) = 20. \] ### Step 6: Expand the left-hand side Expanding gives us: \[ 10 \cos^{-1} x - 2 + 15 \cos^{-1} x - 3 = 20. \] Combining like terms results in: \[ 10 \cos^{-1} x^2 + 13 \cos^{-1} x - 23 = 0. \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( \cos^{-1} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here \( a = 10, b = 13, c = -23 \): \[ \cos^{-1} x = \frac{-13 \pm \sqrt{13^2 - 4 \cdot 10 \cdot (-23)}}{2 \cdot 10}. \] Calculating the discriminant: \[ \sqrt{169 + 920} = \sqrt{1089} = 33. \] Thus: \[ \cos^{-1} x = \frac{-13 \pm 33}{20}. \] Calculating the two potential solutions: 1. \( \cos^{-1} x = \frac{20}{20} = 1 \) implies \( x = \cos(1) \). 2. \( \cos^{-1} x = \frac{-46}{20} = -2.3 \) is not valid since \( \cos^{-1} x \) must be in the range \([0, \pi]\). ### Step 8: Conclusion The only valid solution is \( x = \cos(1) \). Therefore, the number of solutions to the original equation is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation log_(x+1)(x-0.5)=log_(x-0.5)(x+1) is

The number of solutions of the equation log_(3)(3+sqrt(x))+log_(3)(1+x^(2))=0 , is

The sum of solution of the equation log_(10)(3x^(2) +12x +19) - log_(10)(3x +4) = 1 is

Number of solutions of equation log_(2)(9-2)^(x)=10^(log10(3-x)) , is

The solution of the equation log _( cosx ^(2)) (3-2x) lt log _( cos x ^(2)) (2x -1) is:

Number of integral solution of the equation log_(sin x) sqrt(sin^(2)x)+ log_(cos x)sqrt( cos^(2)x)= , where x in [0,6pi] is

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

The number of solutions of the equation log_(sqrt2sin x)(1+cosx)=2 in the interval [0, 5pi] is

The equation sqrt(1+log_(x) sqrt27) log_(3) x+1 = 0 has

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  2. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  3. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  4. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  5. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  6. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  7. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  8. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  9. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  10. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  11. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  12. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |

  13. If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0), then the max...

    Text Solution

    |

  14. The value of Sigma(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equ...

    Text Solution

    |

  15. The range of the function , f (x) = tan^(-1) ((1+x)/(1 - x)) - tan^(...

    Text Solution

    |

  16. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  17. Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1...

    Text Solution

    |

  18. Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) ...

    Text Solution

    |

  19. Which one of the following function contains only one integer in its ...

    Text Solution

    |

  20. If range of the function f(x) = tan^(-1) ( 3x^(2) + bx + 3) , x in R "...

    Text Solution

    |