Home
Class 12
MATHS
Number of values of x satisfying the equ...

Number of values of x satisfying the equation `cos ( 3 arc cos ( x-1)) = 0 ` is equal to

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(3 \arccos(x-1)) = 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos(3 \arccos(x-1)) = 0 \] This implies that: \[ 3 \arccos(x-1) = \frac{\pi}{2} + n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 2: Solve for \( \arccos(x-1) \) Dividing both sides by 3 gives: \[ \arccos(x-1) = \frac{\pi}{6} + \frac{n\pi}{3} \] ### Step 3: Apply the cosine function Now, we apply the cosine function to both sides: \[ x - 1 = \cos\left(\frac{\pi}{6} + \frac{n\pi}{3}\right) \] Thus, \[ x = 1 + \cos\left(\frac{\pi}{6} + \frac{n\pi}{3}\right) \] ### Step 4: Calculate values for different \( n \) Now we will calculate \( \cos\left(\frac{\pi}{6} + \frac{n\pi}{3}\right) \) for different integer values of \( n \): - **For \( n = 0 \)**: \[ x = 1 + \cos\left(\frac{\pi}{6}\right) = 1 + \frac{\sqrt{3}}{2} = 1 + \frac{\sqrt{3}}{2} \] - **For \( n = 1 \)**: \[ x = 1 + \cos\left(\frac{\pi}{6} + \frac{\pi}{3}\right) = 1 + \cos\left(\frac{\pi}{2}\right) = 1 + 0 = 1 \] - **For \( n = 2 \)**: \[ x = 1 + \cos\left(\frac{\pi}{6} + \frac{2\pi}{3}\right) = 1 + \cos\left(\frac{5\pi}{6}\right) = 1 - \frac{\sqrt{3}}{2} = 1 - \frac{\sqrt{3}}{2} \] - **For \( n = 3 \)**: \[ x = 1 + \cos\left(\frac{\pi}{6} + \pi\right) = 1 + \cos\left(\frac{7\pi}{6}\right) = 1 - \frac{\sqrt{3}}{2} \quad (\text{same as for } n=2) \] ### Step 5: Identify distinct values of \( x \) From the calculations, we have: 1. \( x = 1 + \frac{\sqrt{3}}{2} \) 2. \( x = 1 \) 3. \( x = 1 - \frac{\sqrt{3}}{2} \) ### Conclusion The distinct values of \( x \) satisfying the original equation are: - \( 1 + \frac{\sqrt{3}}{2} \) - \( 1 \) - \( 1 - \frac{\sqrt{3}}{2} \) Thus, the number of distinct values of \( x \) is **3**.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

The number of real values of x satisfying the equation 3 sin^(-1)x +pi x-pi=0 is/are :

The number of values of x in [0,2pi] satisfying the equation |cos x – sin x| >= sqrt2 is

Total number of values of ' x ' satisfying the equation, 2^(cos^2x-1)=3. 2^(cos^2x)-4 and the inequality x^2lt=30 is: 1 (b) 2 (c) 3 (d) 4

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

The number of values of x in [-2pi, 2pi] which satisfy the equation "cosec x"=1+cot x is equal to

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

Find the number of value of x in [0,5pi] satisying the equation 3 cos^2 x -10 cos x +7=0

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  2. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  3. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  4. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={ when ...

    Text Solution

    |

  5. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  6. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  7. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  8. The range of values of p for which the equation sin cos^(-1) (cos (tan...

    Text Solution

    |

  9. Number of solutions of the equation log(10) ( sqrt(5 cos^(-1) x -1 ...

    Text Solution

    |

  10. Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

    Text Solution

    |

  11. The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is ...

    Text Solution

    |

  12. The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(...

    Text Solution

    |

  13. If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0), then the max...

    Text Solution

    |

  14. The value of Sigma(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equ...

    Text Solution

    |

  15. The range of the function , f (x) = tan^(-1) ((1+x)/(1 - x)) - tan^(...

    Text Solution

    |

  16. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  17. Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1...

    Text Solution

    |

  18. Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) ...

    Text Solution

    |

  19. Which one of the following function contains only one integer in its ...

    Text Solution

    |

  20. If range of the function f(x) = tan^(-1) ( 3x^(2) + bx + 3) , x in R "...

    Text Solution

    |