Home
Class 12
MATHS
Let f(x) = (arc tan x)^(3) + (arc cot x)...

Let `f(x) = (arc tan x)^(3) + (arc cot x)^(3) `.If the range of f (x) is `[a,b)`, then find the value of `b/(7a)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of the function \( f(x) = (\tan^{-1} x)^3 + (\cot^{-1} x)^3 \) and then determine the value of \( \frac{b}{7a} \) where the range is given as \([a, b)\). ### Step-by-Step Solution: 1. **Understanding the function**: We start with the function: \[ f(x) = (\tan^{-1} x)^3 + (\cot^{-1} x)^3 \] We know that: \[ \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \] Let \( t = \tan^{-1} x \). Then \( \cot^{-1} x = \frac{\pi}{2} - t \). 2. **Substituting in the function**: We can rewrite \( f(x) \) in terms of \( t \): \[ f(x) = t^3 + \left(\frac{\pi}{2} - t\right)^3 \] 3. **Expanding the cubic**: Expanding \( \left(\frac{\pi}{2} - t\right)^3 \): \[ \left(\frac{\pi}{2} - t\right)^3 = \frac{\pi^3}{8} - \frac{3\pi^2}{4}t + \frac{3\pi}{2}t^2 - t^3 \] Therefore, we can combine the terms: \[ f(x) = t^3 + \left(\frac{\pi^3}{8} - \frac{3\pi^2}{4}t + \frac{3\pi}{2}t^2 - t^3\right) \] Simplifying gives: \[ f(x) = \frac{\pi^3}{8} - \frac{3\pi^2}{4}t + \frac{3\pi}{2}t^2 \] 4. **Finding the range**: The function \( f(x) \) is a quadratic in \( t \): \[ f(t) = \frac{3\pi}{2}t^2 - \frac{3\pi^2}{4}t + \frac{\pi^3}{8} \] The vertex of this parabola can be found using: \[ t = -\frac{b}{2a} = -\frac{-\frac{3\pi^2}{4}}{2 \cdot \frac{3\pi}{2}} = \frac{\pi}{4} \] 5. **Calculating the maximum value**: Substituting \( t = \frac{\pi}{4} \) into \( f(t) \): \[ f\left(\frac{\pi}{4}\right) = \frac{3\pi}{2}\left(\frac{\pi}{4}\right)^2 - \frac{3\pi^2}{4}\left(\frac{\pi}{4}\right) + \frac{\pi^3}{8} \] This simplifies to: \[ = \frac{3\pi^3}{32} - \frac{3\pi^3}{16} + \frac{\pi^3}{8} \] Finding a common denominator (32): \[ = \frac{3\pi^3}{32} - \frac{6\pi^3}{32} + \frac{4\pi^3}{32} = \frac{3\pi^3}{32} \] 6. **Finding the endpoints**: As \( t \) approaches \( -\frac{\pi}{2} \) and \( \frac{\pi}{2} \): - At \( t = -\frac{\pi}{2} \): \[ f\left(-\frac{\pi}{2}\right) = \frac{3\pi}{2}\left(-\frac{\pi}{2}\right)^2 - \frac{3\pi^2}{4}\left(-\frac{\pi}{2}\right) + \frac{\pi^3}{8} \] This results in a value of \( \frac{7\pi^3}{32} \). 7. **Final range**: The range of \( f(x) \) is: \[ \left[\frac{3\pi^3}{32}, \frac{7\pi^3}{32}\right) \] Hence, \( a = \frac{3\pi^3}{32} \) and \( b = \frac{7\pi^3}{32} \). 8. **Calculating \( \frac{b}{7a} \)**: \[ \frac{b}{7a} = \frac{\frac{7\pi^3}{32}}{7 \cdot \frac{3\pi^3}{32}} = \frac{7}{21} = \frac{1}{3} \] ### Final Answer: \[ \frac{b}{7a} = \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 6|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

f(x)=sinx+cosx+3 . find the range of f(x).

f(x)=(x^(2)+2x+3)/x . Find the range of f(x).

f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

The range of f(x)=(x+1)(x+2)(x+3)(x+4)+5 for x in [-6,6] If the range of the function is [a,b] where a,b,∈N then find the value of (a+b).

Find the range of f(x)=x^2-x-3.

Find the range of f(x)=x^2-x-3.

Find the range of f(x)=x^2-x-3.

Let f (x) =x ^(3)-3x Find f (f (x))

Let f (x) =(2 |x| -1)/(x-3) Range of f (x):

Let f (x) =(2 |x| -1)/(x-3) Range of f (x):