Home
Class 12
MATHS
lim(z to 0) [{ max ( sin^(-1) x+ cos^(...

` lim_(z to 0) [{ max ( sin^(-1) x+ cos^(-1) x)^(2),min (x^(2) + 4x + 7))} . (sin^(-1)z)/z]` is equal to ( where [.] denotes greatest integer function )

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 6|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

Solution set of [sin^-1 x]gt [cos^-1 x] . where [*] denotes greatest integer function

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is