Home
Class 12
MATHS
Let f(x) = cos(tan^(-1) ( sin ( cot^(-1)...

Let `f(x) = cos(tan^(-1) ( sin ( cot^(-1)x)))`. The simplest form of f(x) can be written as `((x^(2) +A)/(x^(2) +B))^(1//2)` . Then the value of `(A + B) ` is ………………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will simplify the function \( f(x) = \cos(\tan^{-1}(\sin(\cot^{-1}(x)))) \). ### Step 1: Rewrite \( \cot^{-1}(x) \) Let \( \theta = \cot^{-1}(x) \). By definition, this implies that: \[ x = \cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} = \frac{x}{1} \] We can visualize this in a right triangle where the adjacent side is \( x \) and the opposite side is \( 1 \). ### Step 2: Find the hypotenuse Using the Pythagorean theorem, we can find the hypotenuse \( h \): \[ h = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] ### Step 3: Find \( \sin(\theta) \) From the triangle, we can find \( \sin(\theta) \): \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 4: Substitute into \( f(x) \) Now we substitute \( \sin(\theta) \) back into our function: \[ f(x) = \cos(\tan^{-1}(\sin(\theta))) = \cos(\tan^{-1}\left(\frac{1}{\sqrt{x^2 + 1}}\right)) \] ### Step 5: Let \( \phi = \tan^{-1}\left(\frac{1}{\sqrt{x^2 + 1}}\right) \) From the definition of \( \tan \): \[ \tan(\phi) = \frac{1}{\sqrt{x^2 + 1}} \] This means we can form another triangle where: - Opposite side = 1 - Adjacent side = \( \sqrt{x^2 + 1} \) ### Step 6: Find the hypotenuse for \( \phi \) Using the Pythagorean theorem again: \[ \text{hypotenuse} = \sqrt{1^2 + (\sqrt{x^2 + 1})^2} = \sqrt{1 + (x^2 + 1)} = \sqrt{x^2 + 2} \] ### Step 7: Find \( \cos(\phi) \) Now we can find \( \cos(\phi) \): \[ \cos(\phi) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 2}} \] ### Step 8: Final expression for \( f(x) \) Thus, we can express \( f(x) \) as: \[ f(x) = \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 2}} = \left(\frac{x^2 + 1}{x^2 + 2}\right)^{1/2} \] ### Step 9: Identify \( A \) and \( B \) Comparing this with the form \( \left(\frac{x^2 + A}{x^2 + B}\right)^{1/2} \), we can see: - \( A = 1 \) - \( B = 2 \) ### Step 10: Calculate \( A + B \) Finally, we find: \[ A + B = 1 + 2 = 3 \] Thus, the value of \( A + B \) is \( \boxed{3} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 6|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Let cos(2 tan^(-1) x)=1/2 then the value of x is

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x

Let f (x) =cos ^(-1) ((1-tan ^(2)(x//2))/(1+ tan ^(2) (x//2))) . Solve for f(x).

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Let f(x) be the function given by f(x)=arc cos ((1-x^(2))/(1+x^(2))).Then

If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is