Home
Class 12
MATHS
Find the value (s) of r satisfying the e...

Find the value (s) of `r` satisfying the equation `^69 C_(3r-1)-^(69)C_(r^2)=^(69)C_(r^2-1)-^(69)C_(3r)dot`

A

1

B

2

C

3

D

7

Text Solution

Verified by Experts

The correct Answer is:
c,d

`""^(69)C_(3r) + ""^(69)C_(3r) = ""^(69)C_(r^(2)-1) + ""^(69)C_(r^(2))`
` rArr ""^(70)C_(3r) = ""^(70)C_(r^(2))`
` rArr r^(2) = 3r or 70 - 3r = r^(3)`
`rArr r = 0 , 3 or r^(3( + 3r - 70 = 0 `
` rArr r = 0 , 3 or (r + 10 ) (r - 7) = 0 `
` rArr r = 0, 3, 7, - 10 `
But r = 0 , - 10 do not satisfiles the given equation .
Hence , two values of r satisfies ,
i.e. r = 3,7
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

The number of values of 'r' satisfying the equation ""^(39)C_(3r-1)- ""^(39)C_(r^(2) )= ""^(39)C_(r^(2)-1) - ""^(39)C_(3r) is

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

The number of values of r satisfying the equation 69 C 3r−1 ​ − 69 C r 2 ​ = 69 C r 2 −1 ​ − 69 C 3r ​ is:

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

the value of the determinant |{:(.^(n)C_(r-1),,.^(n)C_(r),,(r+1)^(n+2)C_(r+1)),(.^(n)C_(r),,.^(n)C_(r+1),,(r+2)^(n+2)C_(r+2)),(.^(n)C_(r+1),,.^(n)C_(r+2),,(r+3)^(n+2)C_(r+3)):}| is

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .