Home
Class 12
MATHS
Consider (1 + x + x^(2))^(n) = sum(r=0)...

Consider `(1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r)` , where ` a_(0), a_(1), a_(2),…, a_(2n)` are
real number and n is positive integer.
If n is even, the value of ` sum_(r=0)^(n//2-1) a_(2r) ` is

A

`(3^(n) - 1 + a_(n))/(2)`

B

`(3^(n) -1 - a_(n))/(4)`

C

`(3^(n) + 1 + a_(n))/(2)`

D

`(3^(n) + 1 - 2a_(n))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the sum \( \sum_{r=0}^{n/2 - 1} a_{2r} \) where \( (1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r \) and \( n \) is an even positive integer. ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x + x^2)^n \). This can be expanded using the binomial theorem, and it will yield coefficients \( a_r \) for each power of \( x \). 2. **Substituting \( x = 1 \)**: We substitute \( x = 1 \) into the expression: \[ (1 + 1 + 1^2)^n = 3^n \] This gives us: \[ a_0 + a_1 + a_2 + \ldots + a_{2n} = 3^n \quad \text{(Equation 1)} \] 3. **Substituting \( x = -1 \)**: Next, we substitute \( x = -1 \): \[ (1 - 1 + (-1)^2)^n = 1^n = 1 \] This gives us: \[ a_0 - a_1 + a_2 - a_3 + \ldots + a_{2n} = 1 \quad \text{(Equation 2)} \] 4. **Adding Equations 1 and 2**: We add Equation 1 and Equation 2: \[ (a_0 + a_1 + a_2 + \ldots + a_{2n}) + (a_0 - a_1 + a_2 - a_3 + \ldots + a_{2n}) = 3^n + 1 \] This simplifies to: \[ 2a_0 + 2a_2 + 2a_4 + \ldots + 2a_{2n} = 3^n + 1 \] Thus: \[ a_0 + a_2 + a_4 + \ldots + a_{2n} = \frac{3^n + 1}{2} \] 5. **Finding the Required Sum**: Since \( n \) is even, we can denote \( n = 2k \) for some integer \( k \). The terms \( a_{2r} \) for \( r = 0, 1, \ldots, k-1 \) correspond to the even-indexed coefficients up to \( a_{2(n/2 - 1)} \). Therefore: \[ \sum_{r=0}^{n/2 - 1} a_{2r} = \frac{3^n + 1}{4} - \frac{a_n}{2} \] where \( a_n \) is the middle term in the expansion. 6. **Final Result**: Since \( n \) is even, we can conclude that: \[ \sum_{r=0}^{n/2 - 1} a_{2r} = \frac{3^n + 1}{4} \] ### Conclusion: Thus, the value of \( \sum_{r=0}^{n/2 - 1} a_{2r} \) is \( \frac{3^n + 1}{4} \).

To solve the problem, we need to find the value of the sum \( \sum_{r=0}^{n/2 - 1} a_{2r} \) where \( (1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r \) and \( n \) is an even positive integer. ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x + x^2)^n \). This can be expanded using the binomial theorem, and it will yield coefficients \( a_r \) for each power of \( x \). 2. **Substituting \( x = 1 \)**: ...
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|7 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1+x+x^(2)) ^(n) = sum _(r=0)^(2n) a_(r) x^(r) , "where " a_(0),a_(1), a_(2),…a_(2n) are real numbers and n is a positive integer. The value of a_(2) is

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If f(x) = sum_(r=1)^(n)a_(r)|x|^(r) , where a_(i) s are real constants, then f(x) is

"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of a_(2n-1)is

(1+2x+3x^(2))^(15) = sum_(r=0)^(30) a_(r)x^(r) then digit at the unit place of a_(0) + a_(1) + a_(30) is

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

ARIHANT MATHS ENGLISH-BIONOMIAL THEOREM-Exercise (Passage Based Questions)
  1. Consider (1 + x + x^(2))^(n) = sum(r=0)^(n) a(r) x^(r) , where a(0),...

    Text Solution

    |

  2. Consider (1 + x + x^(2))^(n) = sum(r=0)^(n) a(r) x^(r) , where a(0),...

    Text Solution

    |

  3. Consider (1 + x + x^(2))^(n) = sum(r=0)^(n) a(r) x^(r) , where a(0),...

    Text Solution

    |

  4. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follo...

    Text Solution

    |

  5. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follo...

    Text Solution

    |

  6. If (1 + x+ 2x^(2))^(20) = a(0) + a(1) x + a(2) x^(2) + …+ a(40) x^(40)...

    Text Solution

    |

  7. Suppose ,m divided by n , then quotient q and remainder r {:("n)m(q"...

    Text Solution

    |

  8. Suppose ,m divided by n , then quotient q and remainder r or m= n...

    Text Solution

    |

  9. Suppose ,m divided by n , then quotient q and remainder r or m= n...

    Text Solution

    |

  10. Consider the binomial expansion of R = (1 + 2x )^(n) = I + f , where...

    Text Solution

    |

  11. Consider the binomial expansion of R = (1 + 2x )^(n) = I = f , where...

    Text Solution

    |

  12. Consider the binomial expansion of R = (1 + 2x )^(n) = I = f , where...

    Text Solution

    |

  13. If (x + a(1)) (x + a(2)) (x + a(3)) …(x + a(n)) = x^(n) + S(1) x^(n-1...

    Text Solution

    |

  14. If (x + a(1)) (x + a(2)) (x + a(3)) …(x + a(n)) = x^(n) + S(1) x^(n-1...

    Text Solution

    |

  15. If (x + a(1)) (x + a(2)) (x + a(3)) …(x + a(n)) = x^(n) + S(1) x^(n-1...

    Text Solution

    |

  16. A= (5/2+x/2)^n, B=(1+3x)^m Sum of coefficients of expansion of B is ...

    Text Solution

    |

  17. Sum of coefficients of expansion of B is 6561 . The difference of t...

    Text Solution

    |

  18. Sum of coefficients of expansion of B is 6561 . The difference of t...

    Text Solution

    |

  19. Let us consider the binomial expansion (1 + x)^(n) = sum(r=0)^(n) a(...

    Text Solution

    |

  20. Let us consider the binomial expansion (1 + x)^(n) = sum(r=0)^(n) a(...

    Text Solution

    |