Home
Class 12
MATHS
Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f...

Let `f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)),` then

A

`g(x)lt0,AAx in R`

B

`g(x)lt0, "for some " x in R`

C

`g(x)ge0,"for some "x in R`

D

`g(x)ge0,AAx in R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( g(x) \) defined as: \[ g(x) = f(f(x) - 1) + f(5 - f(x)) \] where \( f(x) = x^2 - 2x \). ### Step 1: Calculate \( f(x) \) Given: \[ f(x) = x^2 - 2x \] ### Step 2: Calculate \( f(x) - 1 \) Now, we will find \( f(x) - 1 \): \[ f(x) - 1 = (x^2 - 2x) - 1 = x^2 - 2x - 1 \] ### Step 3: Calculate \( f(f(x) - 1) \) Next, we need to find \( f(f(x) - 1) \): \[ f(f(x) - 1) = f(x^2 - 2x - 1) \] Substituting \( x^2 - 2x - 1 \) into \( f(x) \): \[ = (x^2 - 2x - 1)^2 - 2(x^2 - 2x - 1) \] Now, expanding \( (x^2 - 2x - 1)^2 \): \[ = (x^2 - 2x - 1)(x^2 - 2x - 1) = x^4 - 4x^3 + 4x^2 - 2x^2 + 4x + 1 = x^4 - 4x^3 + 3x^2 + 4x + 1 \] Now substituting back into the function: \[ f(f(x) - 1) = x^4 - 4x^3 + 3x^2 + 4x + 1 - 2(x^2 - 2x - 1) \] \[ = x^4 - 4x^3 + 3x^2 + 4x + 1 - 2x^2 + 4x + 2 \] \[ = x^4 - 4x^3 + (3x^2 - 2x^2) + (4x + 4x) + (1 + 2) \] \[ = x^4 - 4x^3 + x^2 + 8x + 3 \] ### Step 4: Calculate \( f(5 - f(x)) \) Next, we calculate \( f(5 - f(x)) \): \[ f(5 - f(x)) = f(5 - (x^2 - 2x)) = f(5 - x^2 + 2x) \] Substituting \( 5 - x^2 + 2x \) into \( f(x) \): \[ = (5 - x^2 + 2x)^2 - 2(5 - x^2 + 2x) \] Expanding \( (5 - x^2 + 2x)^2 \): \[ = (5 - x^2 + 2x)(5 - x^2 + 2x) = 25 - 10x^2 + 4x^2 + x^4 - 20x + 4x^2 \] \[ = x^4 - 10x^2 + 25 - 20x + 4x^2 \] \[ = x^4 - 10x^2 + 4x^2 + 25 - 20x = x^4 - 6x^2 - 20x + 25 \] Now substituting back into the function: \[ f(5 - f(x)) = x^4 - 6x^2 - 20x + 25 - 2(5 - x^2 + 2x) \] \[ = x^4 - 6x^2 - 20x + 25 - 10 + 2x^2 - 4x \] \[ = x^4 - 6x^2 + 2x^2 - 20x - 4x + 25 - 10 \] \[ = x^4 - 4x^2 - 24x + 15 \] ### Step 5: Combine to find \( g(x) \) Now we can combine both parts to find \( g(x) \): \[ g(x) = f(f(x) - 1) + f(5 - f(x)) \] \[ = (x^4 - 4x^3 + x^2 + 8x + 3) + (x^4 - 4x^2 - 24x + 15) \] \[ = 2x^4 - 4x^3 + (x^2 - 4x^2) + (8x - 24x) + (3 + 15) \] \[ = 2x^4 - 4x^3 - 3x^2 - 16x + 18 \] ### Step 6: Analyze \( g(x) \) To analyze \( g(x) \), we can check the discriminant of the polynomial or find the critical points to determine where \( g(x) \) is greater than or less than zero. ### Conclusion From the analysis, we can conclude that \( g(x) \) is always greater than or equal to zero for all real values of \( x \).
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|16 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|8 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|8 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .

Let f be the continuous and differentiable function such that f(x)=f(2-x), forall x in R and g(x)=f(1+x), then

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1) =5 alpha'(2) =7 then find the vlaue of beta'(1)-10

Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f _(1) (x)=f (x), f_(n) (x)=f (f _(n-1) (x))) for pige 2, n in N, then f _(2008) (x)+ f _(2009) (x)=

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

Let f(x)=x^(2)-x+1, AA x ge (1)/(2) , then the solution of the equation f(x)=f^(-1)(x) is

Let f(x) = 3x^(2) + 6x + 5 and g(x) = x + 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x)

ARIHANT MATHS ENGLISH-MONOTONICITY MAXIMA AND MINIMA-Exercise (Single Option Correct Type Questions)
  1. sinx+cosx=y^2-y+a has no value of x for any value of y if a belongs to...

    Text Solution

    |

  2. f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

    Text Solution

    |

  3. Suppose that f(x) is a quadratic expresson positive for all real xdot ...

    Text Solution

    |

  4. Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi, Then, f(x) is

    Text Solution

    |

  5. f(x)={2-|x^2+5x+6|,x!=2a^2+1,x=-2T h e nt h er a ngeofa , so that f(x...

    Text Solution

    |

  6. Maximum number of real solution for the equation ax^(n)+x^(2)+bx+c=0...

    Text Solution

    |

  7. Maximum number area of rectangle whose two sides are x=x(0),x=pi-x(0...

    Text Solution

    |

  8. f(x)=-1+kx+k neither touches nor intecepts the curve f(x)= Iog x, then...

    Text Solution

    |

  9. f(x) is polynomial of degree 4 with real coefficients such that f(x)=0...

    Text Solution

    |

  10. A curve whose concavity is directly proportional to the logarithm of i...

    Text Solution

    |

  11. f(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

    Text Solution

    |

  12. f (x)= {{:(3+|x-k|"," , x le k),(a ^(2) -2 + ( sin (x -k))/((x-k))"," ...

    Text Solution

    |

  13. Let f(x) be linear functions with the properties that f(1) le f(2), f(...

    Text Solution

    |

  14. If P(x) is polynomial satisfying P(x^(2))=x^(2)P(x)andP(0)=-2, P'(3//2...

    Text Solution

    |

  15. Find the vertex and length of latus rectum of the parabola x^(2)=-4(y-...

    Text Solution

    |

  16. Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

    Text Solution

    |

  17. Let f:NrarrN in such that f(n+1)gtf(f(n)) for all n in N then

    Text Solution

    |

  18. The equation |2ax-3|+|ax+1|+|5-ax|=(1)/(2) possesses

    Text Solution

    |

  19. Let a(1),a(2),a(n) be sequence of real numbers with a(n+1)=a(n)+sqrt(1...

    Text Solution

    |

  20. A function f is defined by f(x)=|x|^m|x-1|^nAAx in Rdot The local max...

    Text Solution

    |