Home
Class 12
MATHS
int x^(2)sinx dx...

`int x^(2)sinx dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 \sin x \, dx \), we will use the method of integration by parts. The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = x^2 \) (which we will differentiate) - \( dv = \sin x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we differentiate \( u \) and integrate \( dv \): - \( du = 2x \, dx \) - \( v = -\cos x \) ### Step 3: Apply the integration by parts formula Substituting into the integration by parts formula: \[ \int x^2 \sin x \, dx = uv - \int v \, du \] This gives us: \[ \int x^2 \sin x \, dx = x^2 (-\cos x) - \int (-\cos x)(2x) \, dx \] Simplifying this, we have: \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx \] ### Step 4: Solve \( \int x \cos x \, dx \) using integration by parts again Now we need to evaluate \( \int x \cos x \, dx \). We will apply integration by parts again. Let: - \( u = x \) - \( dv = \cos x \, dx \) Differentiating and integrating gives us: - \( du = dx \) - \( v = \sin x \) Now applying the integration by parts formula again: \[ \int x \cos x \, dx = x \sin x - \int \sin x \, dx \] The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x \] So we have: \[ \int x \cos x \, dx = x \sin x + \cos x \] ### Step 5: Substitute back into the original integral Now we substitute back into our earlier equation: \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2(x \sin x + \cos x) \] ### Step 6: Simplify the expression This simplifies to: \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2\cos x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2\cos x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int x^2 sinx^3 dx

Evaluate: inte^(2x)sinx\ dx

Evaluate: inte^(2x)sinx\ dx

Evaluate: inte^(-2x)sinx\ dx

int x^3 sinx^4 dx

Evaluate: int(sin2x)/((1+sinx)(2+sinx)\ dx

Evaluate: (i) int sin( x-a)/ sinx dx (ii) int sinx/sin(x-a )dx

Evaluate the following definite integral: int_0^(pi//2)x^2sinx\ dx

Evaluate: int(sin2x)/((1+sinx)(2+sinx))dx

Evaluate: int(x+sinx)\ dx