Home
Class 12
MATHS
int (tan^(-1)x)dx...

`int (tan^(-1)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1}(x) \, dx \), we will use integration by parts. Here is the step-by-step solution: ### Step 1: Identify parts for integration by parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \tan^{-1}(x) \) (which we will differentiate) - \( dv = dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{1+x^2} \, dx \) - \( v = x \) ### Step 3: Apply the integration by parts formula Substituting into the integration by parts formula: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int x \cdot \frac{1}{1+x^2} \, dx \] ### Step 4: Simplify the remaining integral Now we need to simplify the integral \( \int \frac{x}{1+x^2} \, dx \). We can rewrite it as: \[ \int \frac{x}{1+x^2} \, dx = \frac{1}{2} \int \frac{2x}{1+x^2} \, dx \] Let \( t = 1 + x^2 \), then \( dt = 2x \, dx \). ### Step 5: Substitute and integrate Substituting \( t \) into the integral: \[ \int \frac{2x}{1+x^2} \, dx = \int \frac{1}{t} \, dt = \ln |t| + C = \ln(1+x^2) + C \] Thus, \[ \int \frac{x}{1+x^2} \, dx = \frac{1}{2} \ln(1+x^2) + C \] ### Step 6: Combine results Now, substituting back into our integration by parts result: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \left( \frac{1}{2} \ln(1+x^2) \right) + C \] Finally, we can write the answer as: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \] ### Final Answer \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(tan^(-1)x)/(x^(4))dx .

Evaluate: int(tan^(-1)x^2)\ x\ dx

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

int e^(tan^(-1)x) ((1+x+x^2)/(1+x^2))dx

Evaluate int_(0)^(int) (tan^(-1)(ax))/(xsqrt(1-x^(2)))dx , 'a' being parameter.

int tan^-1(cotx)dx

Evaluate: int(tan^(-1)x)/(1+x^2)dx

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

Evaluate: int(e^tan^(-1)(x))/(1+x^2)\ dx