Home
Class 12
MATHS
int sec^(-1)x dx...

`int sec^(-1)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sec^{-1}(x) \, dx \), we will use the method of integration by parts. Let's go through the steps in detail. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We will let: - \( u = \sec^{-1}(x) \) (the inverse secant function) - \( dv = dx \) 2. **Differentiate and integrate**: We need to find \( du \) and \( v \): - The derivative of \( u \) is: \[ du = \frac{1}{\sqrt{x^2 - 1}} \cdot \frac{1}{x} \, dx = \frac{1}{x \sqrt{x^2 - 1}} \, dx \] - The integral of \( dv \) is: \[ v = x \] 3. **Apply the integration by parts formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ \int \sec^{-1}(x) \, dx = x \sec^{-1}(x) - \int x \left(\frac{1}{x \sqrt{x^2 - 1}} \, dx\right) \] 4. **Simplify the integral**: The integral simplifies to: \[ \int \sec^{-1}(x) \, dx = x \sec^{-1}(x) - \int \frac{1}{\sqrt{x^2 - 1}} \, dx \] 5. **Evaluate the remaining integral**: The integral \( \int \frac{1}{\sqrt{x^2 - 1}} \, dx \) is a standard integral, which evaluates to: \[ \int \frac{1}{\sqrt{x^2 - 1}} \, dx = \ln \left| x + \sqrt{x^2 - 1} \right| + C \] 6. **Combine the results**: Putting everything together, we have: \[ \int \sec^{-1}(x) \, dx = x \sec^{-1}(x) - \ln \left| x + \sqrt{x^2 - 1} \right| + C \] ### Final Answer: \[ \int \sec^{-1}(x) \, dx = x \sec^{-1}(x) - \ln \left| x + \sqrt{x^2 - 1} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int sec^(3)x dx .

int x sinx sec^(3)x dx is equal to

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1) dx

Evaluate the following integrals. int tanx sec^(6) x dx

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

int e^x sec e^x dx

Evaluate: int (sec ^(2) x)/(cosec ^(2) x) dx

int sec^(2)x / cosc^(2) x dx

Evaluate int tan ^(2) x sec^(4) x dx

int " x sec"^(2) " x dx "