Home
Class 12
MATHS
int " x tan"^(-1) " x dx "...

`int " x tan"^(-1) " x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \tan^{-1}(x) \, dx \), we will use the method of integration by parts. ### Step-by-Step Solution: 1. **Identify \( u \) and \( dv \)**: - Let \( u = \tan^{-1}(x) \) and \( dv = x \, dx \). 2. **Differentiate \( u \) and Integrate \( dv \)**: - Differentiate \( u \): \[ du = \frac{1}{1+x^2} \, dx \] - Integrate \( dv \): \[ v = \frac{x^2}{2} \] 3. **Apply the Integration by Parts Formula**: - The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] - Applying this, we have: \[ \int x \tan^{-1}(x) \, dx = \tan^{-1}(x) \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{1+x^2} \, dx \] 4. **Simplify the Integral**: - The integral simplifies to: \[ \int x \tan^{-1}(x) \, dx = \frac{x^2}{2} \tan^{-1}(x) - \frac{1}{2} \int \frac{x^2}{1+x^2} \, dx \] 5. **Further Simplify the Integral**: - The term \( \frac{x^2}{1+x^2} \) can be rewritten as: \[ \frac{x^2}{1+x^2} = 1 - \frac{1}{1+x^2} \] - Thus, the integral becomes: \[ \int x \tan^{-1}(x) \, dx = \frac{x^2}{2} \tan^{-1}(x) - \frac{1}{2} \left( \int 1 \, dx - \int \frac{1}{1+x^2} \, dx \right) \] 6. **Evaluate the Remaining Integrals**: - The integrals are: \[ \int 1 \, dx = x \] \[ \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x) \] - Therefore, we have: \[ \int x \tan^{-1}(x) \, dx = \frac{x^2}{2} \tan^{-1}(x) - \frac{1}{2} \left( x - \tan^{-1}(x) \right) \] 7. **Combine the Results**: - Combining everything gives: \[ \int x \tan^{-1}(x) \, dx = \frac{x^2}{2} \tan^{-1}(x) - \frac{x}{2} + \frac{1}{2} \tan^{-1}(x) + C \] - Rearranging terms: \[ = \frac{x^2}{2} \tan^{-1}(x) + \frac{1}{2} \tan^{-1}(x) - \frac{x}{2} + C \] ### Final Answer: \[ \int x \tan^{-1}(x) \, dx = \frac{x^2}{2} \tan^{-1}(x) - \frac{x}{2} + \frac{1}{2} \tan^{-1}(x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int " sec (tan"^(_1)" x ) dx "

int (tan^(-1)x)dx

Evaluate int tan^(-1) x dx

Evaluate: int tan ^(-1) sqrt x dx

int 1/((1+x^2)tan^(-1)x)dx

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

Solve: int_(-1)^(1)x tan^(-1)x dx

int tan^(3)x*dx

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=