Home
Class 12
MATHS
Evaluate int sec^(3)x dx....

Evaluate `int sec^(3)x dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sec^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \( \sec^3 x \) as \( \sec^2 x \cdot \sec x \): \[ \int \sec^3 x \, dx = \int \sec^2 x \cdot \sec x \, dx \] ### Step 2: Use the Identity We know from trigonometric identities that: \[ \sec^2 x = 1 + \tan^2 x \] Thus, we can express \( \sec^2 x \) in terms of \( \tan x \): \[ \int \sec^3 x \, dx = \int (1 + \tan^2 x) \sec x \, dx \] ### Step 3: Substitution Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \) implies \( dx = \frac{dt}{\sec^2 x} \). Therefore, we can replace \( \sec^2 x \, dx \) with \( dt \): \[ \int \sec^3 x \, dx = \int (1 + t^2) \sec x \cdot \frac{dt}{\sec^2 x} = \int (1 + t^2) \sec x \cdot dt \] ### Step 4: Express \( \sec x \) Using the substitution \( t = \tan x \), we have: \[ \sec x = \sqrt{1 + \tan^2 x} = \sqrt{1 + t^2} \] Thus, the integral becomes: \[ \int (1 + t^2) \sqrt{1 + t^2} \, dt \] ### Step 5: Expand the Integral Now we expand the integrand: \[ \int (1 + t^2) \sqrt{1 + t^2} \, dt = \int (1 + t^2)^{3/2} \, dt \] ### Step 6: Use the Formula for Integration The integral \( \int (1 + t^2)^{3/2} \, dt \) can be solved using the formula: \[ \int (a^2 + x^2)^{n} \, dx = \frac{x}{2} (a^2 + x^2)^{n} + \frac{a^2}{2n + 1} \int (a^2 + x^2)^{n - 1} \, dx \] For our case, \( a = 1 \), \( n = \frac{3}{2} \). ### Step 7: Solve the Integral Using the formula, we can compute: \[ \int (1 + t^2)^{3/2} \, dt = \frac{t}{2} (1 + t^2)^{3/2} + \frac{1}{2 \cdot \frac{3}{2} + 1} \int (1 + t^2)^{1/2} \, dt \] ### Step 8: Final Result After evaluating the integral and substituting back \( t = \tan x \), we obtain: \[ \int \sec^3 x \, dx = \frac{1}{2} \tan x \sec x + \frac{1}{2} \log |\tan x + \sec x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int sec^(-1)x dx

Evaluate: int (sec ^(2) x)/(cosec ^(2) x) dx

Evaluate : int " sec"^(2) " 3x dx "

Evaluate: intx^3+sec^2x\ dx

Evaluate: int (x-3)(5-x) dx

Evaluate int x sin 3x dx .

Evaluate int x sin 3x dx .

Evaluate int(x^3)/(x-2)dx

Evaluate int\(3-x).x^2\dx

Evaluate: int2^(x)3^(x)dx