Home
Class 12
MATHS
Evaluate int(e^(sinx))/(cos^2x)(xcos^3x-...

Evaluate `int(e^(sinx))/(cos^2x)(xcos^3x-sinx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{e^{\sin x}}{\cos^2 x} \left( x \cos^3 x - \sin x \right) \, dx, \] we will follow the steps outlined in the video transcript. ### Step 1: Simplify the Integral We start by rewriting the integral: \[ I = \int \frac{e^{\sin x}}{\cos^2 x} \left( x \cos^3 x - \sin x \right) \, dx. \] Distributing \(\frac{1}{\cos^2 x}\) inside the parentheses gives: \[ I = \int e^{\sin x} \left( x \cos x - \frac{\sin x}{\cos^2 x} \right) \, dx. \] ### Step 2: Substitution Let \( t = \sin x \). Then, we have: \[ dt = \cos x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\cos x}. \] Also, since \(\cos^2 x = 1 - \sin^2 x = 1 - t^2\), we can express \(\cos x\) as \(\sqrt{1 - t^2}\). ### Step 3: Change of Variables Now, substituting these into the integral: \[ I = \int e^t \left( \sin^{-1}(t) \cdot \sqrt{1 - t^2} - \frac{t}{1 - t^2} \right) \frac{dt}{\sqrt{1 - t^2}}. \] This simplifies to: \[ I = \int e^t \left( \sin^{-1}(t) - \frac{t}{(1 - t^2)^{3/2}} \right) dt. \] ### Step 4: Separate the Integral We can separate the integral into two parts: \[ I = \int e^t \sin^{-1}(t) \, dt - \int e^t \frac{t}{(1 - t^2)^{3/2}} \, dt. \] ### Step 5: Use Integration by Parts For the first integral, we can apply integration by parts. Let \( u = \sin^{-1}(t) \) and \( dv = e^t dt \). Then, \( du = \frac{1}{\sqrt{1 - t^2}} dt \) and \( v = e^t \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int e^t \sin^{-1}(t) \, dt = e^t \sin^{-1}(t) - \int e^t \frac{1}{\sqrt{1 - t^2}} \, dt. \] ### Step 6: Evaluate the Remaining Integral The second integral can be evaluated using the known formula: \[ \int e^t \frac{1}{\sqrt{1 - t^2}} \, dt = e^t \cdot \frac{1}{\sqrt{1 - t^2}} + C. \] ### Step 7: Combine Results Combining these results, we have: \[ I = e^t \sin^{-1}(t) - e^t \cdot \frac{1}{\sqrt{1 - t^2}} + C. \] ### Step 8: Substitute Back Finally, substituting \( t = \sin x \) back into the equation gives: \[ I = e^{\sin x} \sin^{-1}(\sin x) - e^{\sin x} \cdot \frac{1}{\cos x} + C. \] Since \(\sin^{-1}(\sin x) = x\), we can write: \[ I = e^{\sin x} \left( x - \frac{1}{\cos x} \right) + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{e^{\sin x}}{\cos^2 x} \left( x \cos^3 x - \sin x \right) \, dx = e^{\sin x} \left( x - \sec x \right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1-sinx)/(cos^2x)\ dx

Evaluate: int(sinx)/(cos2x)\ dx

Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)\ dx

Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)\ dx

Evaluate: int(dx)/(sinx(3+cos^2x)

Evaluate : int(sinx)/(cos^(9//2)x)dx

Evaluate: int1/(sinx(2cos^2x-1)dx

int(sinx)/(3+4cos^(2)x)dx

Evaluate: int(sin(a-x))/(sinx)dx

Evaluate int(dx)/(sinx(3+cos^(2)x))