Home
Class 12
MATHS
Let x and y be 2 real numbers which sati...

Let x and y be 2 real numbers which satisfy the equations `(tan^(2)x - sec^(2)y )= (5a)/(6) - 3 ` and ` (- sec^(2)x + tan^(2)y ) = a^(2) ` , then the product of all possible value's of a can be equal to :

A

`0`

B

` -(2)/(3)`

C

`-1`

D

` -(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of all possible values of \( a \) given the equations: 1. \( \tan^2 x - \sec^2 y = \frac{5a}{6} - 3 \) 2. \( -\sec^2 x + \tan^2 y = a^2 \) ### Step 1: Rewrite the equations Let's rewrite the equations for clarity: - Equation (1): \[ \tan^2 x - \sec^2 y = \frac{5a}{6} - 3 \] - Equation (2): \[ -\sec^2 x + \tan^2 y = a^2 \] ### Step 2: Add the two equations Now, we will add both equations: \[ (\tan^2 x - \sec^2 y) + (-\sec^2 x + \tan^2 y) = \left(\frac{5a}{6} - 3\right) + a^2 \] This simplifies to: \[ \tan^2 x + \tan^2 y - \sec^2 x - \sec^2 y = \frac{5a}{6} - 3 + a^2 \] ### Step 3: Use the identity We know from trigonometric identities that: \[ \tan^2 \theta - \sec^2 \theta = -1 \] Thus, we can rewrite the left-hand side: \[ (\tan^2 x - \sec^2 x) + (\tan^2 y - \sec^2 y) = -1 - 1 = -2 \] So we have: \[ -2 = \frac{5a}{6} - 3 + a^2 \] ### Step 4: Rearrange the equation Rearranging gives: \[ a^2 + \frac{5a}{6} - 1 = 0 \] ### Step 5: Eliminate the fraction To eliminate the fraction, multiply the entire equation by 6: \[ 6a^2 + 5a - 6 = 0 \] ### Step 6: Use the quadratic formula Now, we can use the quadratic formula to find the values of \( a \): \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 6 \), \( b = 5 \), and \( c = -6 \): \[ a = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 6 \cdot (-6)}}{2 \cdot 6} \] \[ = \frac{-5 \pm \sqrt{25 + 144}}{12} \] \[ = \frac{-5 \pm \sqrt{169}}{12} \] \[ = \frac{-5 \pm 13}{12} \] ### Step 7: Calculate the two possible values of \( a \) Calculating the two possible values: 1. \( a = \frac{-5 + 13}{12} = \frac{8}{12} = \frac{2}{3} \) 2. \( a = \frac{-5 - 13}{12} = \frac{-18}{12} = -\frac{3}{2} \) ### Step 8: Find the product of the values Now, we need to find the product of these two values: \[ \text{Product} = \left(-\frac{3}{2}\right) \cdot \left(\frac{2}{3}\right) = -1 \] ### Final Answer Thus, the product of all possible values of \( a \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|11 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

Solve the equation tan x + sec x = 2 cos x

int x^3 (sec^2x-tan^2x)dx

Find the real numbers (x,y) that satisfy the equation: xy^(2) = 15x^(2) +17xy + 15y^(2) x^(2)y = 20x^(2) + 3y^(2)

The number of solutions of the equation tan^(2)x-sec^(10)x+1=0" for " x in (0, 20) is equal to

Find all number of pairs x,y that satisfy the equation tan^(4) x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

If (1+sec^(2)pi x). (1+sec^(2)y)= -x^(2)+2x+3 then

If x and y are the real numbers satisfying the equation 12sinx + 5cos x = 2y^2 - 8y +21 , then the value of 12cot((xy)/2) is:

Solution of the differential equation tan y.sec^(2) x dx + tan x. sec^(2)y dy = 0 is

Let y=f (x) and x/y (dy)/(dx) =(3x ^(2)-y)/(2y-x^(2)),f(1)=1 then the possible value of 1/3 f(3) equals :