Home
Class 12
MATHS
Smallest positive x satisfying the equat...

Smallest positive x satisfying the equation ` cos^(3) 3x + cos^(3) 5x = 8 cos^(3) 4x * cos^(3) x ` is :

A

` 15^(@) `

B

` 18^(@) `

C

` 22.5^(@) `

D

` 30^(@) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^3(3x) + \cos^3(5x) = 8 \cos^3(4x) \cos^3(x) \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \cos^3(3x) + \cos^3(5x) = 8 \cos^3(4x) \cos^3(x) \] ### Step 2: Use the Sum of Cubes Formula Recall the formula for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \cos(3x) \) and \( b = \cos(5x) \). Then we can rewrite the left-hand side: \[ \cos^3(3x) + \cos^3(5x) = (\cos(3x) + \cos(5x))(\cos^2(3x) - \cos(3x)\cos(5x) + \cos^2(5x)) \] ### Step 3: Simplify the Right-Hand Side The right-hand side can be rewritten as: \[ 8 \cos^3(4x) \cos^3(x) = 2(\cos(4x) \cos(x))^3 \] ### Step 4: Use the Cosine Addition Formula Using the cosine addition formula: \[ \cos(a) + \cos(b) = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] We apply this to \( \cos(3x) + \cos(5x) \): \[ \cos(3x) + \cos(5x) = 2 \cos(4x) \cos(x) \] ### Step 5: Substitute Back into the Equation Substituting back, we have: \[ 2 \cos(4x) \cos(x) \cdot (\cos^2(3x) - \cos(3x)\cos(5x) + \cos^2(5x)) = 2(\cos(4x) \cos(x))^3 \] ### Step 6: Cancel Out Common Factors Assuming \( \cos(4x) \cos(x) \neq 0 \), we can divide both sides by \( 2 \cos(4x) \cos(x) \): \[ \cos^2(3x) - \cos(3x)\cos(5x) + \cos^2(5x) = (\cos(4x) \cos(x))^2 \] ### Step 7: Set Up the Conditions Now we have: \[ \cos(3x) = 0 \quad \text{or} \quad \cos(5x) = 0 \quad \text{or} \quad \cos(4x) = 0 \quad \text{or} \quad \cos(x) = 0 \] ### Step 8: Solve Each Case 1. **For \( \cos(3x) = 0 \)**: \[ 3x = \frac{\pi}{2} + n\pi \implies x = \frac{\pi}{6} + \frac{n\pi}{3} \] 2. **For \( \cos(5x) = 0 \)**: \[ 5x = \frac{\pi}{2} + n\pi \implies x = \frac{\pi}{10} + \frac{n\pi}{5} \] 3. **For \( \cos(4x) = 0 \)**: \[ 4x = \frac{\pi}{2} + n\pi \implies x = \frac{\pi}{8} + \frac{n\pi}{4} \] 4. **For \( \cos(x) = 0 \)**: \[ x = \frac{\pi}{2} + n\pi \] ### Step 9: Find the Smallest Positive Solution Now we need to find the smallest positive \( x \) from the solutions obtained: - From \( \cos(3x) = 0 \): \( x = \frac{\pi}{6} \) - From \( \cos(5x) = 0 \): \( x = \frac{\pi}{10} \) - From \( \cos(4x) = 0 \): \( x = \frac{\pi}{8} \) - From \( \cos(x) = 0 \): \( x = \frac{\pi}{2} \) The smallest positive \( x \) is \( \frac{\pi}{10} \). ### Step 10: Convert to Degrees To convert \( x = \frac{\pi}{10} \) to degrees: \[ x = \frac{\pi}{10} \cdot \frac{180}{\pi} = 18^\circ \] ### Final Answer Thus, the smallest positive \( x \) satisfying the equation is: \[ \boxed{\frac{\pi}{10}} \text{ or } 18^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|11 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

Samllest positive angle satisfying the equation cos^(2)x+cos^(2) 2x+cos^(2)3x=1 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) = 0 is equal to

Solve the equation 4 cos x - 3 sec x = tan x .

The sum of all possible values of x satisfying the equation sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2) is

Prove that cos ^(3) x sin ^(2) x = (1)/(16) (2cos x - cos 3x - cos 5x).

if sin x +sin^2 x = 1 then cos^12 x+ 3 cos^10 x + 3 cos^8 x + cos ^6 x =

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is