Home
Class 12
MATHS
If alpha and beta are roots of the equat...

If `alpha and beta` are roots of the equation `a cos theta + b sin theta = c`, then find the value of `tan (alpha + beta).`

A

` (2 ab)/(a^(2)+ b^(2))`

B

` (2 ab)/(a^(2) - b^(2))`

C

` (a^(2) + b^(2))/(a^(2) - b^(2))`

D

` (a^(2) - b^(2))/(a^(2) + b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|11 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha and beta are the two different roots of equations a cos theta+b sin theta=c , prove that (a) tan (alpha+beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha , beta are two different values of theta lying between 0 and 2pi which satisfy the equation 6 cos theta + 8 sin theta=9, find the value of sin ( alpha + beta).

If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the equation 8x ^(2) -26x + 15 =0, then find the value of cos (alpha + beta).

If A=2 sin^2 theta - cos 2 theta and A in [alpha, beta] , then find the values of alpha and beta.

If alpha and beta are acute angles and sin alpha = (3)/(5) , sin beta = (8)/( 17), find the values of sin ( alpha + beta), cos (alpha pm beta), and tan ( alpha pm beta).

If alpha and beta are two different values of theta lying between 0 and 2pi which satisfy the equations 6costheta+8sin theta=9 , find the value of sin2(alpha+beta) .

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .