Home
Class 12
MATHS
If Delta=|(1,3cos theta,1),(sin theta,1,...

If `Delta=|(1,3cos theta,1),(sin theta,1,3cos theta),(1,sin theta,1)|,` then the `1/1000` [|maximum value of `Delta-` minimum value of `Delta|^3`] is equal to.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the determinant \(\Delta\) and then find the maximum and minimum values of \(\Delta\). Finally, we will compute \(\frac{1}{1000} \left| \text{maximum value of } \Delta - \text{minimum value of } \Delta \right|^3\). ### Step 1: Calculate the Determinant \(\Delta\) Given: \[ \Delta = \begin{vmatrix} 1 & 3\cos\theta & 1 \\ \sin\theta & 1 & 3\cos\theta \\ 1 & \sin\theta & 1 \end{vmatrix} \] We can expand this determinant using the first row: \[ \Delta = 1 \cdot \begin{vmatrix} 1 & 3\cos\theta \\ \sin\theta & 1 \end{vmatrix} - 3\cos\theta \cdot \begin{vmatrix} \sin\theta & 3\cos\theta \\ 1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} \sin\theta & 1 \\ 1 & \sin\theta \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 1 & 3\cos\theta \\ \sin\theta & 1 \end{vmatrix} = 1 \cdot 1 - 3\cos\theta \cdot \sin\theta = 1 - 3\sin\theta\cos\theta\) 2. \(\begin{vmatrix} \sin\theta & 3\cos\theta \\ 1 & 1 \end{vmatrix} = \sin\theta \cdot 1 - 3\cos\theta \cdot 1 = \sin\theta - 3\cos\theta\) 3. \(\begin{vmatrix} \sin\theta & 1 \\ 1 & \sin\theta \end{vmatrix} = \sin^2\theta - 1\) Putting these back into the determinant: \[ \Delta = 1 - 3\sin\theta\cos\theta - 3\cos\theta(\sin\theta - 3\cos\theta) + (\sin^2\theta - 1) \] \[ = 1 - 3\sin\theta\cos\theta - 3\sin\theta\cos\theta + 9\cos^2\theta + \sin^2\theta - 1 \] \[ = \sin^2\theta + 9\cos^2\theta - 6\sin\theta\cos\theta \] ### Step 2: Simplify \(\Delta\) Using the identity \(\sin^2\theta + \cos^2\theta = 1\): \[ \Delta = 1 + 8\cos^2\theta - 6\sin\theta\cos\theta \] ### Step 3: Find Maximum and Minimum Values of \(\Delta\) Let \(x = \cos 2\theta\) and \(y = \sin 2\theta\). We can express \(\Delta\) as: \[ \Delta = 5 + 4\cos 2\theta - 3\sin 2\theta \] To find the maximum and minimum values, we can use the formula for the maximum and minimum of a linear combination of sine and cosine: \[ R = \sqrt{(4)^2 + (-3)^2} = \sqrt{16 + 9} = 5 \] Thus, \[ -5 \leq 4\cos 2\theta - 3\sin 2\theta \leq 5 \] Adding 5 to all parts: \[ 0 \leq 5 + 4\cos 2\theta - 3\sin 2\theta \leq 10 \] So, the maximum value of \(\Delta\) is 10 and the minimum value is 0. ### Step 4: Calculate \(\frac{1}{1000} \left| \text{maximum value of } \Delta - \text{minimum value of } \Delta \right|^3\) Now we compute: \[ \frac{1}{1000} \left| 10 - 0 \right|^3 = \frac{1}{1000} \cdot 10^3 = \frac{1000}{1000} = 1 \] ### Final Answer The final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - H|1 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - I|4 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - F|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

(1)/(sin theta)+(1)/(cos theta)=

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Let A=[(1,3cos 2theta,1),(sin2theta, 1, 3 cos 2 theta),(1, sin 2 theta, 1)] the maximum value of |A| is equal to k, then (k-3)^(2) is equal to

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

Prove that (1- cos theta + sin theta)/( 1+cos theta +sin theta) = "tan"(theta)/(2) .

If 4 tan theta =3 evaluate (4sin theta - cos theta+1)/(4sin theta+cos theta-1)

Find the value of (1+cos theta+sin theta)/(1-cos theta +sin theta)

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).