Home
Class 12
MATHS
lim(x to 0) (log (1 + 2x))/(x) + lim(x ...

`lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2)` equals

A

30

B

32

C

35

D

34

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the following limits: 1. \( L_1 = \lim_{x \to 0} \frac{\log(1 + 2x)}{x} \) 2. \( L_2 = \lim_{x \to 2} \frac{x^4 - 2^4}{x - 2} \) Finally, we will add \( L_1 \) and \( L_2 \). ### Step 1: Evaluate \( L_1 \) We start with: \[ L_1 = \lim_{x \to 0} \frac{\log(1 + 2x)}{x} \] Substituting \( x = 0 \) gives us \( \frac{\log(1 + 0)}{0} = \frac{0}{0} \), which is an indeterminate form. Therefore, we can apply L'Hôpital's Rule. Using L'Hôpital's Rule: \[ L_1 = \lim_{x \to 0} \frac{\frac{d}{dx}[\log(1 + 2x)]}{\frac{d}{dx}[x]} \] Calculating the derivatives: - The derivative of \( \log(1 + 2x) \) is \( \frac{2}{1 + 2x} \). - The derivative of \( x \) is \( 1 \). So we have: \[ L_1 = \lim_{x \to 0} \frac{2}{1 + 2x} \] Now substituting \( x = 0 \): \[ L_1 = \frac{2}{1 + 0} = 2 \] ### Step 2: Evaluate \( L_2 \) Next, we evaluate: \[ L_2 = \lim_{x \to 2} \frac{x^4 - 2^4}{x - 2} \] Substituting \( x = 2 \) gives us \( \frac{0}{0} \), which is again an indeterminate form. We apply L'Hôpital's Rule again. Using L'Hôpital's Rule: \[ L_2 = \lim_{x \to 2} \frac{\frac{d}{dx}[x^4 - 2^4]}{\frac{d}{dx}[x - 2]} \] Calculating the derivatives: - The derivative of \( x^4 - 2^4 \) is \( 4x^3 \). - The derivative of \( x - 2 \) is \( 1 \). Thus: \[ L_2 = \lim_{x \to 2} \frac{4x^3}{1} \] Now substituting \( x = 2 \): \[ L_2 = 4 \cdot 2^3 = 4 \cdot 8 = 32 \] ### Step 3: Add \( L_1 \) and \( L_2 \) Now we can find the total limit: \[ L_1 + L_2 = 2 + 32 = 34 \] ### Final Answer Thus, the final answer is: \[ \boxed{34} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 2) (x^(2) - 4)/(x + 3) is equal to

lim_(x to 0) (x^(4) + x^(2) - 2x + 1) is eqal to

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

lim_(x to 4) (x^(2) - 16)/(sqrt(x) - 2) is equal to

lim_(x to 2)(log(x-1))/(x-2) is equal to

lim_(x to 0) (sin^(2) x//4)/(x) is equal to

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

The value of lim_(x to 0) ((1)/(x^(2)) - cot x) equals

Let a =lim _(xto0) (ln (cos 2x ))/( 3x ^(2)) , b = lim _(xto0) (sin ^(2) 2x )/(x (1-e ^(x))), c = lim _(x to 1) (sqrtx-x )/( ln x). Then a,b,c satisfy :

lim_{x \to 0} log x/cot x = 0

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. Let lim(x to 0) ("sin" 2X)/(x) = a and lim(x to 0) (3x)/(tan x) = b, t...

    Text Solution

    |

  2. Let lim(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim(x to 0) (e^(2x...

    Text Solution

    |

  3. lim(x to 0) (log (1 + 2x))/(x) + lim(x to 0) (x^(4) - 2^(4))/(x - 2)...

    Text Solution

    |

  4. lim(x to oo) (sqrt(x + 1) - sqrt(x)) equals

    Text Solution

    |

  5. The value of lim(x to 0) ((1)/(x) - cot x) equals

    Text Solution

    |

  6. Evaluate underset(xtooo)lim[(x^(4)sin((1)/(x))+x^(2))/((1+|x|^(3)))].

    Text Solution

    |

  7. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  8. The value of lim(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

    Text Solution

    |

  9. The value of lim(x to 0) (tan x - sin s)/(x^(3)) equals

    Text Solution

    |

  10. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  11. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  12. If m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  13. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  14. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  15. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  16. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  17. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  18. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  19. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  20. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |