Home
Class 12
MATHS
lim(x to oo) (sqrt(x + 1) - sqrt(x)) eq...

`lim_(x to oo) (sqrt(x + 1) - sqrt(x))` equals

A

`oo`

B

0

C

`-1`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} (\sqrt{x + 1} - \sqrt{x}) \), we can follow these steps: ### Step 1: Identify the limit Let \( L = \lim_{x \to \infty} (\sqrt{x + 1} - \sqrt{x}) \). ### Step 2: Rationalize the expression To simplify the expression, we can multiply and divide by the conjugate \( \sqrt{x + 1} + \sqrt{x} \): \[ L = \lim_{x \to \infty} \frac{(\sqrt{x + 1} - \sqrt{x})(\sqrt{x + 1} + \sqrt{x})}{\sqrt{x + 1} + \sqrt{x}} \] ### Step 3: Apply the difference of squares Using the identity \( a^2 - b^2 = (a - b)(a + b) \), we can simplify the numerator: \[ L = \lim_{x \to \infty} \frac{(x + 1) - x}{\sqrt{x + 1} + \sqrt{x}} \] This simplifies to: \[ L = \lim_{x \to \infty} \frac{1}{\sqrt{x + 1} + \sqrt{x}} \] ### Step 4: Simplify the denominator As \( x \) approaches infinity, both \( \sqrt{x + 1} \) and \( \sqrt{x} \) approach \( \sqrt{x} \). Therefore, we can write: \[ \sqrt{x + 1} \approx \sqrt{x} \quad \text{as } x \to \infty \] Thus, the denominator becomes: \[ \sqrt{x + 1} + \sqrt{x} \approx \sqrt{x} + \sqrt{x} = 2\sqrt{x} \] ### Step 5: Substitute back into the limit Now we can substitute this back into our limit: \[ L = \lim_{x \to \infty} \frac{1}{2\sqrt{x}} \] ### Step 6: Evaluate the limit As \( x \) approaches infinity, \( \sqrt{x} \) also approaches infinity, which means: \[ L = \frac{1}{2 \cdot \infty} = 0 \] ### Conclusion Thus, we find that: \[ \lim_{x \to \infty} (\sqrt{x + 1} - \sqrt{x}) = 0 \] ### Final Answer The limit is \( 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(x to 0) (sqrt(a+x)-sqrt(a-x))/( x)

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

lim_(x->oo)(sqrt(x+sqrt(x))-sqrt(x)) equals

Evaluate lim_(x to a) (sqrt(x) + sqrt(a))/(x + a)

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

Evaluate lim_(x to 0) (sqrt(1 + x) + sqrt(1 - x))/(1 - x)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. Let lim(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim(x to 0) (e^(2x...

    Text Solution

    |

  2. lim(x to 0) (log (1 + 2x))/(x) + lim(x to 0) (x^(4) - 2^(4))/(x - 2)...

    Text Solution

    |

  3. lim(x to oo) (sqrt(x + 1) - sqrt(x)) equals

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x) - cot x) equals

    Text Solution

    |

  5. Evaluate underset(xtooo)lim[(x^(4)sin((1)/(x))+x^(2))/((1+|x|^(3)))].

    Text Solution

    |

  6. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  7. The value of lim(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

    Text Solution

    |

  8. The value of lim(x to 0) (tan x - sin s)/(x^(3)) equals

    Text Solution

    |

  9. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  10. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  11. If m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  12. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  14. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  15. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  16. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  17. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  18. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  19. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  20. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |